A224547 Number of (n+1) X 6 0..1 matrices with each 2 X 2 subblock idempotent.
80, 137, 193, 294, 428, 635, 943, 1420, 2162, 3333, 5193, 8166, 12936, 20611, 32983, 52952, 85210, 137349, 221653, 357998, 578544, 935327, 1512543, 2446424, 3957398, 6402125, 10357693, 16757850, 27113432, 43869023, 70980043, 114846496
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..1..1..1..0..1....1..0..0..1..0..1....1..0..0..0..0..0....1..1..0..0..0..1 ..0..0..0..0..0..1....1..0..0..1..0..1....0..0..0..0..0..0....0..0..0..0..0..1 ..0..0..0..0..0..1....0..0..0..1..0..1....0..0..0..0..0..0....0..0..0..0..0..1 ..0..0..0..0..0..1....0..0..0..1..0..1....0..0..0..0..1..1....0..0..0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224550.
Formula
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5) for n>6.
Empirical g.f.: x*(80 - 183*x + 45*x^2 + 127*x^3 - 80*x^4 + 6*x^5) / ((1 - x)^3*(1 - x - x^2)). - Colin Barker, Aug 30 2018
Comments