A224548 Number of (n+1) X 7 0..1 matrices with each 2 X 2 subblock idempotent.
132, 218, 302, 448, 635, 916, 1323, 1941, 2887, 4363, 6688, 10383, 16288, 25764, 41012, 65594, 105273, 169374, 272985, 440519, 711477, 1149773, 1858822, 3005953, 4861910, 7864766, 12723338, 20584516, 33304007, 53884408, 87184023, 141063753
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..0..1..0..0..0..0....1..0..1..0..0..0..0....1..0..0..0..0..1..0 ..1..0..1..0..0..0..0....1..0..1..0..0..0..0....0..0..0..0..0..1..0 ..1..0..1..0..0..0..0....0..0..1..0..0..0..0....0..0..0..0..0..1..0 ..0..0..1..0..0..1..1....0..0..1..0..0..0..1....0..0..0..0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224550.
Formula
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5) for n>6.
Empirical g.f.: x*(132 - 310*x + 90*x^2 + 198*x^3 - 129*x^4 + 10*x^5) / ((1 - x)^3*(1 - x - x^2)). - Colin Barker, Aug 31 2018
Comments