A224549 Number of (n+1) X 8 0..1 matrices with each 2 X 2 subblock idempotent.
216, 345, 472, 682, 943, 1323, 1858, 2652, 3845, 5681, 8544, 13062, 20247, 31739, 50190, 79892, 127789, 205117, 330056, 532022, 858611, 1386835, 2241302, 3623632, 5860053, 9478413, 15332788, 24805102, 40131355, 64929471, 105053374, 169974912
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..1..1..0..0..1..0..0....1..0..0..0..0..0..0..0....1..1..1..0..0..0..0..0 ..0..0..0..0..0..1..0..1....1..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0 ..0..0..0..0..0..1..0..1....1..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0 ..0..0..0..0..0..1..0..1....0..0..0..0..0..1..1..1....0..0..0..0..0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A224550.
Formula
Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5) for n>6.
Empirical g.f.: x*(216 - 519*x + 172*x^2 + 303*x^3 - 202*x^4 + 15*x^5) / ((1 - x)^3*(1 - x - x^2)). - Colin Barker, Aug 31 2018
Comments