A224550 T(n,k)=Number of (n+1)X(k+1) 0..1 matrices with each 2X2 subblock idempotent.
8, 16, 16, 28, 32, 28, 48, 52, 52, 48, 80, 86, 78, 86, 80, 132, 137, 125, 125, 137, 132, 216, 218, 193, 196, 193, 218, 216, 352, 345, 302, 294, 294, 302, 345, 352, 572, 547, 472, 448, 428, 448, 472, 547, 572, 928, 869, 743, 682, 635, 635, 682, 743, 869, 928, 1504, 1385
Offset: 1
Examples
Some solutions for n=3 k=4 ..1..1..0..0..0....1..0..1..0..1....1..0..0..0..0....1..0..1..0..0 ..0..0..0..0..0....1..0..1..0..1....1..0..0..0..0....1..0..1..0..0 ..1..1..1..1..1....0..0..1..0..1....0..0..0..0..0....1..0..1..0..0 ..0..0..0..0..0....0..0..1..0..1....0..0..0..1..1....0..0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1103
Crossrefs
Column 1 is A204644
Formula
Empirical for diagonal:
a(n) = 6*a(n-1) -12*a(n-2) +5*a(n-3) +12*a(n-4) -12*a(n-5) -3*a(n-6) +6*a(n-7) -a(n-9)
Empirical for column k:
k=1: a(n) = 2*a(n-1) -a(n-3)
k=2: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5)
k=3..12+: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5) for n>6
Comments