This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224579 #19 Aug 09 2024 01:53:30 %S A224579 1,3,28,13,3,1,2,1,1,8,3,4,3,3,15,12,5,2,8,1,24,2,3,5,1,1,3,3,1,1,1,2, %T A224579 1,1,7,12,1,1,1,3,1,1,1,2,1,107,1,3,6,1,26,121,3,2,1,1,12,117,1,2,3,7, %U A224579 5,41,5,1,5,1,1,2,3,1,200,1,4,3,191,1,5,3,5 %N A224579 Continued fraction of (gamma+sqrt(4+gamma^2))/2, where gamma is the Euler-Mascheroni constant. %C A224579 Continued fraction of the constant in A224578. %H A224579 Paolo P. Lava, <a href="/A224579/b224579.txt">Table of n, a(n) for n = 0..999</a> %p A224579 Digits:=200; a:=evalf(gamma,5000); evalf((a+sqrt(4+a^2))/2,1000); %p A224579 numtheory[cfrac](%,200,'quotients') ; %t A224579 ContinuedFraction[(EulerGamma+Sqrt[4+EulerGamma^2])/2, 100] (* _G. C. Greubel_, Aug 30 2018 *) %o A224579 (PARI) default(realprecision, 100); contfrac((Euler + sqrt(4 + Euler^2))/2) \\ _G. C. Greubel_, Aug 30 2018 %o A224579 (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); ContinuedFraction((EulerGamma(R) + Sqrt(4+EulerGamma(R)^2))/2); // _G. C. Greubel_, Aug 30 2018 %Y A224579 Cf. A001620, A188640, A224578 (decimal expansion). %K A224579 nonn,cofr %O A224579 0,2 %A A224579 _Paolo P. Lava_, Apr 11 2013 %E A224579 Offset changed by _Andrew Howroyd_, Aug 08 2024