This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224614 #20 Sep 08 2022 08:46:04 %S A224614 181,199,4363,4549,14563,15073,15739,27361,27901,33469,34231,37123, %T A224614 46279,48271,48673,54193,56101,64591,64609,65539,65731,70183,70891, %U A224614 75703,75979,77659,77863,80953,94309,112573,114889,115153,117361,118189,135799,144751 %N A224614 Primes p such that q = 2*p^3-1 and 2*p*q^2-1 are both prime. %C A224614 When A224610(i) = 1 then prime(i) is in this sequence. %C A224614 Subsequence of A177104. - _R. J. Mathar_, Apr 19 2013 %H A224614 Pierre CAMI, <a href="/A224614/b224614.txt">Table of n, a(n) for n = 1..10000</a> %t A224614 Reap[For[p = 2, p < 200000, p = NextPrime[p], If[PrimeQ[q = 2*p^3 - 1] && PrimeQ[r = 2*p*q^2 - 1], Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Apr 19 2013 *) %t A224614 bpQ[n_]:=Module[{c=2n^3-1},AllTrue[{c,2n*c^2-1},PrimeQ]]; Select[ Prime[ Range[ 15000]],bpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Sep 05 2015 *) %o A224614 (Magma) [p: p in PrimesUpTo(180000) | IsPrime(q) and IsPrime(2*p*q^2-1) where q is 2*p^3-1 ]; // _Bruno Berselli_, Apr 19 2013 %Y A224614 Cf. A224610, A224613. %K A224614 nonn %O A224614 1,1 %A A224614 _Pierre CAMI_, Apr 12 2013