A224666 Number of 4 X 4 0..n matrices with each 2 X 2 subblock idempotent.
78, 108, 142, 180, 222, 268, 318, 372, 430, 492, 558, 628, 702, 780, 862, 948, 1038, 1132, 1230, 1332, 1438, 1548, 1662, 1780, 1902, 2028, 2158, 2292, 2430, 2572, 2718, 2868, 3022, 3180, 3342, 3508, 3678, 3852, 4030, 4212, 4398, 4588, 4782, 4980, 5182
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..0..0..0....1..0..0..0....1..1..0..1....1..0..1..0....1..0..0..0 ..0..0..0..0....1..0..0..1....0..0..0..1....0..0..1..0....1..0..0..0 ..0..0..0..0....1..0..0..1....0..0..0..1....0..0..1..0....1..0..0..0 ..0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..0....0..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 4 of A224665.
Formula
Empirical: a(n) = 2*n^2 + 24*n + 52.
Conjectures from Colin Barker, Sep 02 2018: (Start)
G.f.: 2*x*(39 - 63*x + 26*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)