A224667 Number of 5 X 5 0..n matrices with each 2 X 2 subblock idempotent.
196, 260, 332, 412, 500, 596, 700, 812, 932, 1060, 1196, 1340, 1492, 1652, 1820, 1996, 2180, 2372, 2572, 2780, 2996, 3220, 3452, 3692, 3940, 4196, 4460, 4732, 5012, 5300, 5596, 5900, 6212, 6532, 6860, 7196, 7540, 7892, 8252, 8620, 8996, 9380, 9772, 10172
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1..0..0..1....1..0..1..0..0....1..0..1..0..0....1..0..1..0..0 ..0..1..0..0..1....1..0..1..0..1....1..0..1..0..1....1..0..1..0..0 ..0..1..0..0..1....0..0..1..0..1....1..0..1..0..1....1..0..1..0..0 ..0..1..0..0..1....0..0..1..0..1....1..0..1..0..1....1..0..1..0..1 ..0..1..0..0..1....0..0..1..0..1....0..0..1..0..1....2..0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Row 5 of A224665.
Formula
Empirical: a(n) = 4*n^2 + 52*n + 140.
Conjectures from Colin Barker, Sep 02 2018: (Start)
G.f.: 4*x*(49 - 82*x + 35*x^2) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>3.
(End)