A224670 Number of (n+1) X 3 0..2 matrices with each 2 X 2 subblock idempotent.
25, 50, 76, 123, 191, 300, 470, 741, 1173, 1866, 2980, 4775, 7671, 12348, 19906, 32125, 51885, 83846, 135548, 219191, 354515, 573460, 927706, 1500873, 2428261, 3928790, 6356680, 10285071, 16641323, 26925936, 43566770, 70492185, 114058401
Offset: 1
Keywords
Examples
Some solutions for n=3: ..1..0..2....0..0..0....1..1..1....1..0..0....1..0..0....0..0..0....1..0..0 ..0..0..1....0..0..0....0..0..0....0..0..1....0..0..0....0..0..0....0..0..0 ..0..0..1....0..0..0....0..0..0....0..0..1....0..0..1....0..0..0....0..0..0 ..0..0..1....0..0..0....0..0..1....0..0..1....0..0..1....1..1..1....0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5).
Conjectures from Colin Barker, Feb 17 2018: (Start)
G.f.: x*(25 - 50*x + x^2 + 44*x^3 - 21*x^4) / ((1 - x)^3*(1 - x - x^2)).
a(n) = -2 + 2^(1-n)*sqrt(5)*(-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n)) + 2*(1+n) + (1+n)*(2+n)/2.
(End)
Comments