This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224673 #12 Jul 23 2025 05:17:45 %S A224673 115,191,257,381,542,793,1166,1746,2650,4080,6355,9996,15843,25257, %T A224673 40439,64951,104556,168579,272108,439556,710424,1148626,1857577, %U A224673 3004606,4860457,7863203,12721661,20582721,33302090,53882365,87181850,141061446 %N A224673 Number of (n+1) X 6 0..2 matrices with each 2 X 2 subblock idempotent. %C A224673 Column 5 of A224676. %H A224673 R. H. Hardin, <a href="/A224673/b224673.txt">Table of n, a(n) for n = 1..210</a> %F A224673 Empirical: a(n) = 4*a(n-1) - 5*a(n-2) + a(n-3) + 2*a(n-4) - a(n-5) for n > 6. %F A224673 Conjectures from _Colin Barker_, Feb 17 2018: (Start) %F A224673 G.f.: x*(115 - 269*x + 68*x^2 + 193*x^3 - 118*x^4 + 6*x^5) / ((1 - x)^3*(1 - x - x^2)). %F A224673 a(n) = 34 + (2^(-1-n)*((1-sqrt(5))^n*(-11+53*sqrt(5)) + (1+sqrt(5))^n*(11+53*sqrt(5)))) / sqrt(5) + 14*(1+n) + (5/2)*(1 + n)*(2+n) for n>1. %F A224673 (End) %e A224673 Some solutions for n=3: %e A224673 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 %e A224673 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 %e A224673 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 %e A224673 2 1 1 1 1 1 2 0 0 1 1 1 0 0 1 0 0 0 2 1 1 1 1 1 %K A224673 nonn %O A224673 1,1 %A A224673 _R. H. Hardin_, Apr 14 2013