This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224735 #8 Mar 27 2025 04:22:32 %S A224735 1,8,140,3616,116542,4316080,175593800,7640774080,349626142909, %T A224735 16632958651688,816163494236860,41069537125459360,2110206360805542510, %U A224735 110346590629125981872,5857345961837113457864,314962180518584299711424,17128125582951726423704502,940726748732537798295599280 %N A224735 G.f.: exp( Sum_{n>=1} binomial(2*n,n)^3 * x^n/n ). %F A224735 Logarithmic derivative yields A002897. %e A224735 G.f.: A(x) = 1 + 8*x + 140*x^2 + 3616*x^3 + 116542*x^4 + 4316080*x^5 +... %e A224735 where %e A224735 log(A(x)) = 2^3*x + 6^3*x^2/2 + 20^3*x^3/3 + 70^3*x^4/4 + 252^3*x^5/5 + 924^3*x^6/6 + 3432^3*x^7/7 + 12870^3*x^8/8 +...+ A000984(n)^3*x^n/n +... %t A224735 CoefficientList[Series[Exp[8*x*HypergeometricPFQ[{1, 1, 3/2, 3/2, 3/2}, {2, 2, 2, 2}, 64*x]], {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 27 2025 *) %o A224735 (PARI) {a(n)=polcoeff(exp(sum(k=1,n,binomial(2*k,k)^3*x^k/k)+x*O(x^n)),n)} %o A224735 for(n=0,20,print1(a(n),", ")) %Y A224735 Cf. A224732, A224734, A224736, A002897, A000984. %K A224735 nonn %O A224735 0,2 %A A224735 _Paul D. Hanna_, Apr 16 2013