cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224747 Number of lattice paths from (0,0) to (n,0) that do not go below the x-axis and consist of steps U=(1,1), D=(1,-1) and H=(1,0), where H-steps are only allowed if y=1.

This page as a plain text file.
%I A224747 #73 Jun 26 2025 18:30:03
%S A224747 1,0,1,1,3,5,12,23,52,105,232,480,1049,2199,4777,10092,21845,46377,
%T A224747 100159,213328,460023,981976,2115350,4522529,9735205,20836827,
%U A224747 44829766,96030613,206526972,442675064,951759621,2040962281,4387156587,9411145925,20226421380
%N A224747 Number of lattice paths from (0,0) to (n,0) that do not go below the x-axis and consist of steps U=(1,1), D=(1,-1) and H=(1,0), where H-steps are only allowed if y=1.
%C A224747 Also the number of non-capturing (cf. A054391) set-partitions of {1..n} without singletons. - _Christian Sievers_, Oct 29 2024
%H A224747 Alois P. Heinz, <a href="/A224747/b224747.txt">Table of n, a(n) for n = 0..1000</a>
%H A224747 C. Banderier and M. Wallner, <a href="http://www.emis.de/journals/SLC/wpapers/s77vortrag/wallner.pdf">Lattice paths with catastrophes</a>, SLC 77, Strobl - 12.09.2016, H(x).
%H A224747 Cyril Banderier and Michael Wallner, <a href="https://arxiv.org/abs/1707.01931">Lattice paths with catastrophes</a>, arXiv:1707.01931 [math.CO], 2017.
%H A224747 Jean-Luc Baril and Sergey Kirgizov, <a href="https://arxiv.org/abs/2104.01186">Bijections from Dyck and Motzkin meanders with catastrophes to pattern avoiding Dyck paths</a>, arXiv:2104.01186 [math.CO], 2021.
%H A224747 Jean-Luc Baril, Sergey Kirgizov, and Armen Petrossian, <a href="https://ajc.maths.uq.edu.au/pdf/84/ajc_v84_p398.pdf">Dyck Paths with catastrophes modulo the positions of a given pattern</a>, Australasian J. Comb. (2022) Vol. 84, No. 2, 398-418.
%F A224747 a(n) = Sum_{k=0..floor((n-2)/2)} A009766(2*n-3*k-3, k) for n >= 2. - _Johannes W. Meijer_, Jul 22 2013
%F A224747 a(2*n) = A125187(n) (bisection). - _R. J. Mathar_, Jul 27 2013
%F A224747 HANKEL transform is A000012. HANKEL transform omitting a(0) is a period 4 sequence [0, -1, 0, 1, ...] = -A101455. - _Michael Somos_, Jan 14 2014
%F A224747 Given g.f. A(x), then 0 = A(x)^2 * (x^3 + 2*x^2 + x - 1) + A(x) * (-2*x^2 - 3*x + 2) + (2*x - 1). - _Michael Somos_, Jan 14 2014
%F A224747 0 = a(n)*(a(n+1) +2*a(n+2) +a(n+3) -a(n+4)) +a(n+1)*(2*a(n+1) +5*a(n+2) +a(n+3) -2*a(n+4)) +a(n+2)*(2*a(n+2) -a(n+3) -a(n+4)) +a(n+3)*(-a(n+3) +a(n+4)). - _Michael Somos_, Jan 14 2014
%F A224747 G.f.: (2 - 3*x - 2*x^2 + x * sqrt(1 - 4*x^2)) / (2 * (1 - x - 2*x^2 - x^3)). - _Michael Somos_, Jan 14 2014
%F A224747 D-finite with recurrence (-n+1)*a(n) +(n-1)*a(n-1) +6*(n-3)*a(n-2) +3*(-n+5)*a(n-3) +8*(-n+4)*a(n-4) +4*(-n+4)*a(n-5)=0. - _R. J. Mathar_, Sep 15 2021
%e A224747 a(5) = 5: UHHHD, UDUHD, UUDHD, UHDUD, UHUDD.
%e A224747 a(6) = 12: UHHHHD, UDUHHD, UUDHHD, UHDUHD, UHUDHD, UHHDUD, UDUDUD, UUDDUD, UHHUDD, UDUUDD, UUDUDD, UUUDDD.
%e A224747 G.f. = 1 + x^2 + x^3 + 3*x^4 + 5*x^5 + 12*x^6 + 23*x^7 + 52*x^8 + 105*x^9 + ...
%p A224747 a:= proc(n) option remember; `if`(n<5, [1, 0, 1, 1, 3][n+1],
%p A224747       a(n-1)+ (6*(n-3)*a(n-2) -3*(n-5)*a(n-3)
%p A224747       -8*(n-4)*a(n-4) -4*(n-4)*a(n-5))/(n-1))
%p A224747     end:
%p A224747 seq(a(n), n=0..40);
%t A224747 a[n_] := a[n] = If[n < 5, {1, 0, 1, 1, 3}[[n+1]], a[n-1] + (6*(n-3)*a[n-2] - 3*(n-5)*a[n-3] - 8*(n-4)*a[n-4] - 4*(n-4)*a[n-5])/(n-1)]; Table[a[n], {n, 0, 34}] (* _Jean-François Alcover_, Jun 20 2013, translated from Maple *)
%t A224747 a[ n_] := SeriesCoefficient[ (2 - 3 x - 2 x^2 + x Sqrt[1 - 4 x^2]) / (2 (1 - x - 2 x^2 - x^3)), {x, 0, n}] (* _Michael Somos_, Jan 14 2014 *)
%o A224747 (PARI) {a(n) = if( n<0, 0, polcoeff( (2 - 3*x - 2*x^2 + x * sqrt(1 - 4*x^2 + x * O(x^n)) ) / (2 * (1 - x - 2*x^2 - x^3)), n))} /* _Michael Somos_, Jan 14 2014 */
%Y A224747 Cf. A000108 (without H-steps), A001006 (unrestricted H-steps), A057977 (<=1 H-step).
%Y A224747 Cf. A000012, A101455, A125187, A001405 (invert transform).
%Y A224747 Inverse binomial transform of A054391.
%K A224747 nonn
%O A224747 0,5
%A A224747 _Alois P. Heinz_, Apr 17 2013