A224763 Define a sequence of rationals by S(1)=1; for n>=1, write S(1),...,S(n) as XY^k, Y nonempty, where the fractional exponent k is maximized, and set S(n+1)=k; sequence gives denominators of S(1), S(2), ...
1, 1, 1, 1, 2, 1, 2, 1, 5, 1, 4, 1, 2, 3, 1, 3, 2, 4, 7, 1, 5, 12, 1, 3, 4, 7, 7, 1, 5, 4, 5, 2, 15, 1, 6, 1, 2, 5, 7, 13, 1, 5, 4, 13, 1, 4, 3, 23, 1, 4, 2, 14, 1, 4, 2, 4, 1, 4, 2, 4, 1, 53, 1, 6, 29, 1, 3, 20, 1, 3, 3, 1, 3, 3, 1, 14, 24, 1, 6, 15, 1, 3, 9, 1, 3, 3, 4, 29, 1, 5, 24, 14, 16, 1, 5, 5, 1, 3, 13, 1, 3, 3, 16
Offset: 1
Examples
The sequence S(1), S(2), ... begins 1, 1, 2, 1, 3/2, 1, 3/2, 2, 6/5, 1, 5/4, 1, 3/2, 4/3, 1, 4/3, 3/2, 5/4, 8/7, 1, 6/5, 13/12, 1, 4/3, 5/4, 8/7, 9/7, 1, 6/5, 5/4, 6/5, 3/2, 16/15, 1, 7/6, 1, 3/2, 6/5, 8/7, 14/13, 1, 6/5, 5/4, 16/13, 1, 5/4, 4/3, 24/23, 1, 5/4, 3/2, 15/14, 1, 5/4, 3/2, 7/4, ...
Links
- Allan Wilks, Table of n, a(n) for n = 1..10000 (terms 1..1000 from N. J. A. Sloane)
- Allan Wilks, Table of n, S(n) for n = 1..10000 [The first 1000 terms were computed by _N. J. A. Sloane_]
Programs
-
Maple
See A224762.
Comments