This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224783 #32 Feb 12 2024 13:29:09 %S A224783 1,2,4,1,16,1,64,1,256,1,1024,1,4096,1,16384,1,65536,1,262144,1, %T A224783 1048576,1,4194304,1,16777216,1,67108864,1,268435456,1,1073741824,1, %U A224783 4294967296,1,17179869184,1,68719476736,1,274877906944,1,1099511627776 %N A224783 Denominator of Bernoulli(n,1/2) - Bernoulli(n,0). %C A224783 See A157779 and A157780 for values of Bernoulli(n,1/2), and A027641 and A027642 for values of Bernoulli(n,0). %C A224783 B(n,1/2) - B(n,0) = 0, 1/2, -1/4, 0, 1/16, 0, -3/64, 0, 17/256, 0, -155/1024, 0, 2073/4096, 0, -38227/16384,... for n>=0. %C A224783 The sequence of numerators is 0, 1, -1, 0, 1, 0, -3, 0, 17, 0, -155, 0, 2073, 0, -38227, 0, 929569, 0, -28820619, 0, 1109652905,...and appears to contain a mix of A001469 and A036968. %H A224783 Vincenzo Librandi, <a href="/A224783/b224783.txt">Table of n, a(n) for n = 0..250</a> %H A224783 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,5,0,-4). %F A224783 a(n) = A059222(n+1) if n <> 1. %F A224783 From _Colin Barker_, Mar 19 2014: (Start) %F A224783 G.f.: (4*x^5-9*x^3-x^2+2*x+1) / ((x-1)*(x+1)*(2*x-1)*(2*x+1)). %F A224783 a(n) = 5*a(n-2)-4*a(n-4) for n>5. %F A224783 a(n) = (1+(-2)^n-(-1)^n+2^n)/2 for n>1. (End). %e A224783 a(0) = 1-1, a(1) = 0+1/2, a(2) = -1/12-1/6=-1/4. %p A224783 A224783 := proc(n) %p A224783 bernoulli(n,1/2)-bernoulli(n) ; %p A224783 denom(%) ; %p A224783 end proc: # _R. J. Mathar_, Apr 25 2013 %t A224783 Table[Denominator[BernoulliB[n, 1/2] - BernoulliB[n, 0]], {n, 0, 50}] (* _Vincenzo Librandi_, Mar 19 2014 *) %o A224783 (PARI) Vec((4*x^5-9*x^3-x^2+2*x+1)/((x-1)*(x+1)*(2*x-1)*(2*x+1)) + O(x^100)) \\ _Colin Barker_, Mar 20 2014 %Y A224783 Cf. A001469, A027641, A027642, A036968, A059222, A157779, A157780. %K A224783 nonn,frac,less,easy %O A224783 0,2 %A A224783 _Paul Curtz_, Apr 17 2013