This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224791 #11 Nov 13 2019 01:48:26 %S A224791 0,1,2,2,5,8,3,10,23,32,4,17,50,105,138,5,26,93,248,491,630,6,37,156, %T A224791 497,1236,2357,2988,7,50,243,896,2629,6222,11567,14556,8,65,358,1497, %U A224791 5022,13873,31662,57785,72342,9,82,505,2360,8879,27774,73309,162756 %N A224791 Triangle T(n,k) read by rows: left edge is 0, 1, 2, ... (cf. A001477); otherwise each entry is sum of entry to left and entries immediately above it to left and right, with 1 for the missing right term at right edge. %H A224791 Reinhard Zumkeller, <a href="/A224791/b224791.txt">Rows n = 0..120 of triangle, flattened</a> %H A224791 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A224791 T(n,0) = n, T(n+1,k) = T(n+1,k-1) + T(n,k-1) + T(n,k) (0 < k <= n) and T(n+1,n+1) = T(n+1,n) + T(n,n) + 1. %e A224791 Triangle begins: %e A224791 0; %e A224791 1, 2; %e A224791 2, 5, 8; %e A224791 3, 10, 23, 32; %e A224791 4, 17, 50, 105, 138; %p A224791 T:= proc(n, k) option remember; %p A224791 if k=0 then n %p A224791 elif k=n then T(n,n-1) + T(n-1,n-1) + 1 %p A224791 else T(n,k-1) + T(n-1,k-1) + T(n-1, k) %p A224791 fi %p A224791 end: %p A224791 seq(seq(T(n, k), k=0..n), n=0..12); # _G. C. Greubel_, Nov 12 2019 %t A224791 T[n_, k_]:= T[n, k]= If[k==0, n, If[k==n , T[n, n-1] + T[n-1, n-1] + 1, T[n, k-1] + T[n-1, k-1] + T[n-1, k]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Nov 12 2019 *) %o A224791 (Haskell) %o A224791 a224791 n k = a224791_tabl !! n !! k %o A224791 a224791_row n = a224791_tabl !! n %o A224791 a224791_tabl = iterate %o A224791 (\row -> scanl1 (+) $ zipWith (+) ([1] ++ row) (row ++ [1])) [0] %o A224791 (PARI) T(n,k) = if(k==0, n, if(k==n, T(n,n-1) + T(n-1,n-1) + 1, T(n,k-1) + T(n-1,k-1) + T(n-1, k) )); \\ _G. C. Greubel_, Nov 12 2019 %o A224791 (Sage) %o A224791 @CachedFunction %o A224791 def T(n, k): %o A224791 if (k==0): return n %o A224791 elif (k==n): return T(n,n-1) + T(n-1,n-1) + 1 %o A224791 else: return T(n,k-1) + T(n-1,k-1) + T(n-1, k) %o A224791 [[T(n, k) for k in (0..n)] for n in (0..12)] # _G. C. Greubel_, Nov 12 2019 %Y A224791 Cf. A051601, A059283. %K A224791 nonn,tabl %O A224791 0,3 %A A224791 _Reinhard Zumkeller_, Apr 18 2013