cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A354667 Triangle read by rows: T(n,k) is the number of tilings of an (n+4*k) X 1 board using k (1,1;5)-combs and n-k squares.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 4, 0, 1, 1, 1, 6, 0, 3, 0, 1, 2, 9, 0, 9, 0, 1, 1, 3, 12, 5, 18, 0, 4, 0, 1, 4, 16, 12, 36, 0, 16, 0, 1, 1, 5, 20, 25, 60, 15, 40, 0, 5, 0, 1, 6, 25, 42, 100, 42, 100, 0, 25, 0, 1, 1, 7, 31, 66, 150, 112, 200
Offset: 0

Views

Author

Michael A. Allen, Jun 05 2022

Keywords

Comments

This is the m=2, t=5 member of a two-parameter family of triangles such that T(n,k) is the number of tilings of an (n+(t-1)*k) X 1 board using k (1,m-1;t)-combs and n-k unit square tiles. A (1,g;t)-comb is composed of a line of t unit square tiles separated from each other by gaps of width g.
T(2*j+r-4*k,k) is the coefficient of x^k in (f(j,x))^(2-r)*(f(j+1,x))^r for r=0,1, where f(n,x) is a (1,5)-bonacci polynomial defined by f(n,x)=f(n-1,x)+x*f(n-5,x)+delta(n,0) where f(n<0,x)=0.
T(n+8-4*k,k) is the number of subsets of {1,2,...,n} of size k such that no two elements in a subset differ by 2, 4, 6, or 8.

Examples

			Triangle begins:
  1;
  1,   0;
  1,   0,   1;
  1,   0,   2,   0;
  1,   0,   4,   0,   1;
  1,   1,   6,   0,   3,   0;
  1,   2,   9,   0,   9,   0,   1;
  1,   3,  12,   5,  18,   0,   4,   0;
  1,   4,  16,  12,  36,   0,  16,   0,   1;
  1,   5,  20,  25,  60,  15,  40,   0,   5,   0;
  1,   6,  25,  42, 100,  42, 100,   0,  25,   0,   1;
  1,   7,  31,  66, 150, 112, 200,  35,  75,   0,   6,   0;
...
		

Crossrefs

Row sums are A005578.
Sums over k of T(n-4*k,k) are A224811.
Other members of the family of triangles: A007318 (m=1,t=2), A059259 (m=2,t=2), A350110 (m=3,t=2), A350111 (m=4,t=2), A350112 (m=5,t=2), A354665 (m=2,t=3), A354666 (m=2,t=4), A354668 (m=3,t=3).
Other triangles related to tiling using combs: A059259, A123521, A157897, A335964.

Programs

  • Mathematica
    T[n_,k_]:=If[k<0 || n
    				

Formula

T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 2*T(n-2,k-2) + T(n-3,k-1) - T(n-3,k-2) - 2*T(n-3,k-3) - T(n-4,k-1) + T(n-4,k-2) + T(n-4,k-3) - T(n-4,k-4) + T(n-5,k-1) - 2*T(n-5,k-3) + T(n-5,k-5) + delta(n,0)*delta(k,0) - delta(n,1)*delta(k,1) - delta(n,2)*delta(k,2) - delta(n,3)*(delta(k,1) - delta(k,3)) with T(n,k<0) = T(n
T(n,0) = 1.
T(n,n) = delta(n mod 2,0).
T(n,1) = n-4 for n>3.
T(2*j+r,2*j-1) = 0 for j>0, r=-1,0,1,2.
T(n,2*j) = C(n/2,j)^2 for j>0 and n even and 2*j <= n <= 2*j+8.
T(n,2*j) = C((n-1)/2,j)*C((n+1)/2,j) for j>0 and n odd and 2*j < n < 2*j+8.
T(2*j+3*p,2*j-p) = C(j+3,4)^p for j>0 and p=0,1,2.
G.f. of row sums: (1-x-x^2)/(1-2*x-x^2+2*x^3).
G.f. of sums of T(n-4*k,k) over k: (1-x^5-x^7-x^10+x^15)/(1-x-x^5+x^6-x^7+x^8-x^9-2*x^10+x^11-x^12+2*x^15-x^16+2*x^17+x^20-x^25).
T(n,k) = T(n-1,k) + T(n-1,k-1) for n>=4*k+1 if k>=0.

A376743 Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,-1,4} for all i=1,...,n.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 5, 5, 6, 8, 11, 15, 25, 35, 46, 61, 85, 125, 175, 245, 341, 470, 650, 925, 1300, 1810, 2521, 3520, 4915, 6880, 9640, 13476, 18801, 26251, 36721, 51346, 71776, 100335, 140210, 195886, 273813, 382821, 535105, 747850, 1045220
Offset: 0

Author

Michael A. Allen, Oct 03 2024

Keywords

Comments

Other sequences related to strongly restricted permutations pi(i) of i in {1,..,n} along with the sets of allowed p(i)-i (containing at least 3 elements): A000045 {-1,0,1}, A189593 {-1,0,2,3,4,5,6}, A189600 {-1,0,2,3,4,5,6,7}, A006498 {-2,0,2}, A080013 {-2,1,2}, A080014 {-2,0,1,2}, A033305 {-2,-1,1,2}, A002524 {-2,-1,0,1,2}, A080000 {-2,0,3}, A080001 {-2,1,3}, A080004 {-2,0,1,3}, A080002 {-2,2,3}, A080005 {-2,0,2,3}, A080008 {-2,1,2,3}, A080011 {-2,0,1,2,3}, A079999 {-2,-1,3}, A080003 {-2,-1,0,3}, A080006 {-2,-1,1,3}, A080009 {-2,-1,0,1,3}, A080007 {-2,-1,2,3}, A080010 {-2,-1,0,2,3}, A080012 {-2,-1,1,2,3}, A072827 {-2,-1,0,1,2,3}, A224809 {-2,0,4}, A189585 {-2,0,1,3,4}, A189581 {-2,-1,0,3,4}, A072850 {-2,-1,0,1,2,3,4}, A189587 {-2,0,1,3,4,5}, A189588 {-2,-1,0,3,4,5}, A189594 {-2,0,1,3,4,5,6}, A189595 {-2,-1,0,3,4,5,6}, A189601 {-2,0,1,3,4,5,6,7}, A189602 {-2,-1,0,3,4,5,6,7}, A224811 {-2,0,8}, A224812 {-2,0,10}, A224813 {-2,0,12}, A006500 {-3,0,3}, A079981 {-3,1,3}, A079983 {-3,0,1,3}, A079982 {-3,2,3}, A079984 {-3,0,2,3}, A079988 {-3,1,2,3}, A079989 {-3,0,1,2,3}, A079986 {-3,-1,1,3}, A079992 {-3,-1,0,1,3}, A079987 {-3,-1,2,3}, A079990 {-3,-1,0,2,3}, A079993 {-3,-1,1,2,3}, A079985 {-3,-2,2,3}, A079991 {-3,-2,0,2,3}, A079996 {-3,-2,0,1,2,3}, A079994 {-3,-2,1,2,3}, A079997 {-3,-2, -1,1,2,3}, A002526 {-3,-2,-1,0,1,2,3}, A189586 {-3,0,1,2,4}, A189583 {-3,-1,0,2,4}, A189582 {-3,-2,0,1,4}, A189584 {-3,-2,-1,0,4}, A189589 {-3,0,1,2,4,5}, A189590 {-3,-1,0,2,4,5}, A189591 {-3,-2,1,4,5}, A189592 {-3,-2,-1,0,4,5}, A224810 {-3,0,6}, A189596 {-3,0,1,2,4,5,6}, A189597 {-3,-1,0,2,4,5,6}, A189598 {-3,-2,0,1,4,5,6}, A189599 {-3,-2,-1,0,4,5,6}, A224814 {-3,0,9}, A031923 {-4,0,4}, A072856 {-4,-3, -2,-1,0,1,2,3,4}, A224815 {-4,0,8}, A154654 {-5,-4,-3,-2,-1,0,1,2,3,4,5}, A154655 {-6,-5,-4,-3, -2,-1,0,1,2,3,4,5,6}.
[Keyword "less", because this comment should be moved to the Index to the OEIS, it is not appropriate here. - N. J. A. Sloane, Oct 25 2024]

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.

Crossrefs

See comments for other sequences related to strongly restricted permutations.

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^3 - x^4 - x^6 + x^9)/(1 - x^3 - x^4 - x^5 - 2*x^6 - x^7 + 2*x^9 + 2*x^10 + x^12 - x^15),{x,0,49}],x]
    LinearRecurrence[{0, 0, 1, 1, 1, 2, 1, 0, -2, -2, 0, -1, 0, 0, 1}, {1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 5, 5, 6, 8}, 50]

Formula

a(n) = a(n-3) + a(n-4) + a(n-5) + 2*a(n-6) + a(n-7) - 2*a(n-9) - 2*a(n-10) - a(n-12) + a(n-15).
G.f.: (1 - x^3 - x^4 - x^6 + x^9)/(1 - x^3 - x^4 - x^5 - 2*x^6 - x^7 + 2*x^9 + 2*x^10 + x^12 - x^15).

A387020 Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,0,5} for all i=1,...,n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 16, 20, 25, 34, 46, 67, 94, 130, 175, 231, 305, 400, 540, 729, 999, 1363, 1855, 2510, 3370, 4531, 6070, 8180, 11026, 14921, 20197, 27322, 36940, 49820, 67204, 90528, 122091, 164686, 222344, 300316, 405574, 547768, 739291, 997794, 1346130
Offset: 0

Author

Michael A. Allen, Aug 13 2025

Keywords

Examples

			a(7) = 2: 1234567, 6712345.
a(8) = 3: 12345678, 17823456, 67123458.
		

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.

Crossrefs

Sequences for numbers of permutations such that p(i)-i is in {-2,0,d} for d=1,..,8: A000930, A006498, A080000, A224809, A387020, A224808, A387021, A224811.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2*x^7 - x^9 + x^14)/(1 - x - 3*x^7 + 2*x^8 - 2*x^9 + x^10 - x^11 + 3*x^14 - x^15 + 2*x^16 - x^21),{x,0,51}],x]
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 3, -2, 2, -1, 1, 0, 0, -3, 1, -2, 0, 0, 0, 0, 1}, {1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 16, 20, 25, 34, 46, 67, 94, 130}, 52]

Formula

a(n) = a(n-1) + 3*a(n-7) - 2*a(n-8) + 2*a(n-9) - a(n-10) + a(n-11) - 3*a(n-14) + a(n-15) - 2*a(n-16) + a(n-21) for n >= 21.
G.f.: (1 - 2*x^7 - x^9 + x^14)/((1 - x)*(1 - x + x^2 - 2*x^3 + x^4 - x^5 - x^7 + x^10)*(1 + x + x^3 + 2*x^4 + x^5 + 2*x^6 + 2*x^7 + x^8 + x^9 + x^10)).

A387021 Number of permutations (p(1),p(2),...,p(n)) of (1,2,...,n) such that p(i)-i is in {-2,0,7} for all i=1,...,n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 25, 30, 36, 46, 59, 81, 109, 153, 207, 277, 361, 463, 589, 743, 949, 1211, 1589, 2083, 2773, 3670, 4861, 6388, 8344, 10848, 14019, 18166, 23479, 30556, 39762, 52049, 68125, 89345, 117034, 153078, 199979, 260572, 339546, 441669, 575341
Offset: 0

Author

Michael A. Allen, Aug 13 2025

Keywords

Examples

			a(9)=2: 123456789, 891234567.
		

References

  • D. H. Lehmer, Permutations with strongly restricted displacements. Combinatorial theory and its applications, II (Proc. Colloq., Balatonfured, 1969), North-Holland, Amsterdam, 1970, pp. 755-770.

Crossrefs

Sequences for numbers of permutations such that p(i)-i is in {-2,0,d} for d=1,...,8: A000930, A006498, A080000, A224809, A387020, A224808, A387021, A224811.

Programs

  • Mathematica
    CoefficientList[Series[(1 - 3*x^9 - 2*x^11 - x^13 + 3*x^18 + 2*x^20 - x^27)/ (1 - x - 4*x^9 + 3*x^10 - 3*x^11 + 2*x^12 - 2*x^13 + x^14 - x^15 + 6*x^18 - 3*x^19 + 6*x^20 - 2*x^21 + 3*x^22 - 4*x^27 + x^28 - 3*x^29 + x^36),{x,0,55}],x]
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 4, -3, 3, -2, 2, -1, 1, 0, 0, -6, 3, -6, 2, -3, 0, 0, 0, 0, 4, -1, 3, 0, 0, 0, 0, 0, 0, -1}, {1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 17, 21, 25, 30, 36, 46, 59, 81, 109, 153, 207, 277, 361, 463, 589, 743, 949, 1211, 1589, 2083, 2773}, 56]

Formula

a(n) = a(n-1) + 4*a(n-9) - 3*a(n-10) + 3*a(n-11) - 2*a(n-12) + 2*a(n-13) - a(n-14) + a(n-15) - 6*a(n-18) + 3*a(n-19) - 6*a(n-20) + 2*a(n-21) - 3*a(n-22) + 4*a(n-27) - a(n-28) + 3*a(n-29) - a(n-36) for n >= 36.
G.f.: (1 - 3*x^9 - 2*x^11 - x^13 + 3*x^18 + 2*x^20 - x^27)/ (1 - x - 4*x^9 + 3*x^10 - 3*x^11 + 2*x^12 - 2*x^13 + x^14 - x^15 + 6*x^18 - 3*x^19 + 6*x^20 - 2*x^21 + 3*x^22 - 4*x^27 + x^28 - 3*x^29 + x^36).
Showing 1-4 of 4 results.