cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224835 Sum of the cubes of the number of divisors function for those divisors of n that are less than or equal to the cube root of n.

This page as a plain text file.
%I A224835 #31 Nov 10 2017 09:56:38
%S A224835 1,1,1,1,1,1,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,1,9,9,9,1,17,1,9,9,9,
%T A224835 1,17,1,9,9,9,1,17,1,9,9,9,1,17,1,9,9,9,1,17,1,9,9,9,1,17,1,9,9,36,1,
%U A224835 17,1,36,9,9,1,44,1,9,9
%N A224835 Sum of the cubes of the number of divisors function for those divisors of n that are less than or equal to the cube root of n.
%H A224835 Robert Israel, <a href="/A224835/b224835.txt">Table of n, a(n) for n = 1..10000</a>
%H A224835 Sary Drappeau, <a href="http://arxiv.org/abs/1302.4318">Propriétés multiplicatives des entiers friables translatés</a>, arXiv:1307.4250 [math.NT] (see page 9).
%H A224835 B. Landreau, <a href="http://blms.oxfordjournals.org/content/21/4/366.extract">A New Proof of a Theorem of Van Der Corput</a>, Bull. London Math. Soc. (1989) 21 (4): 366-368. doi: 10.1112/blms/21.4.366, see Lemma (3) page 1.
%F A224835 a(n) = (Sum_{d|n} d <= n^(1/3)) tau(d)^3.
%F A224835 If p is prime, a(p^k) = A000537(1 + floor(k/3)). - _Robert Israel_, Nov 30 2016
%e A224835 a(7) = 1 because the divisors of 7 are 1 and 7; only 1 is less than the cube root of 7, and tau(1^3) = 1, so the sum is 1.
%e A224835 a(8) = 9 because the divisors of 8 are 1, 2, 4, 8; the cube root of 8 is 2, so only 1 and 2 are divisors less than or equal to the cube root, these divisors cubed are 1 and 8, which add up to 9.
%p A224835 f:= proc(n) add(numtheory:-tau(d)^3, d = select(t -> (t^3<=n), numtheory:-divisors(n))) end proc:
%p A224835 map(f, [$1..100]); # _Robert Israel_, Nov 30 2016
%t A224835 Table[selDivs = Select[Range[Floor[n^(1/3)]], IntegerQ[n/#]&]; Sum[DivisorSigma[0, selDivs[[m]]]^3, {m, Length[selDivs]}], {n, 100}] (* _Alonso del Arte_, Jul 21 2013 *)
%o A224835 (PARI) a(n) = sumdiv(n, d, (d^3<=n)*numdiv(d)^3) \\ _Michel Marcus_, Jul 21 2013
%Y A224835 Cf. A000537, A007425, A224834.
%K A224835 nonn
%O A224835 1,8
%A A224835 _Michel Marcus_, Jul 21 2013