cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224838 Triangle read by rows, obtained from triangle A011973 by reading that array from right to left along the irregular paths shown in the figure.

This page as a plain text file.
%I A224838 #35 Jul 07 2024 00:54:24
%S A224838 1,1,1,2,1,1,3,1,1,3,4,1,4,6,5,1,1,10,10,6,1,1,5,20,15,7,1,6,15,35,21,
%T A224838 8,1,1,21,35,56,28,9,1,1,7,56,70,84,36,10,1,8,28,126,126,120,45,11,1,
%U A224838 1,36,84,252,210,165,55,12,1,1,9,120,210,462,330,220,66,13,1
%N A224838 Triangle read by rows, obtained from triangle A011973 by reading that array from right to left along the irregular paths shown in the figure.
%C A224838 The successive rows have lengths 1,2,2; 3,4,4; 5,6,6; 7,8,8; ...
%C A224838 Sum of row n is A005314(n).
%C A224838 Old definition was: "Triangle of falling diagonals of A011973 (with rows displayed as centered text)."
%H A224838 N. J. A. Sloane, <a href="/A224838/a224838.pdf">Construction of present triangle by reading triangle A011973 from right to left along the paths indicated.</a>
%F A224838 r(n) = binomial(n-floor((4n+15-6k+(-1)^k)/12), n-floor((4n+15-6k+(-1)^k)/12)-floor((2n-1)/3)+k-1), k = 1..floor((2n+2)/3).
%F A224838 R(n) = binomial(n-floor((k+1)/2), n-floor((3k-1)/2)), k = 1..floor((2n+2)/3), gives the terms of each row in reverse order.
%e A224838 First 11 rows of the triangle:
%e A224838   1;
%e A224838   1,  1;
%e A224838   2,  1;
%e A224838   1,  3,  1;
%e A224838   1,  3,  4,  1;
%e A224838   4,  6,  5,  1;
%e A224838   1, 10, 10,  6,  1;
%e A224838   1,  5, 20, 15,  7,  1;
%e A224838   6, 15, 35, 21,  8,  1;
%e A224838   1, 21, 35, 56, 28,  9,  1;
%e A224838   1,  7, 56, 70, 84, 36, 10,  1;
%t A224838 Table[Reverse[Table[Binomial[n - Floor[(k + 1)/2], n - Floor[(3 k - 1)/2]], {k, Floor[(2 n + 2)/3]}]], {n, 13}] (* _T. D. Noe_, Jul 25 2013 *)
%t A224838 Column[Table[Binomial[n - Floor[(4 n + 15 - 6 k + (-1)^k)/12], n - Floor[(4 n + 15 - 6 k + (-1)^k)/12] - Floor[(2 n - 1)/3] + k - 1], {n, 1, 25}, {k, 1, Floor[(2 n + 2)/3]}]] (* _John Molokach_, Jul 25 2013 *)
%Y A224838 Cf. A005314, A227300, A001973, A000045, A004396.
%K A224838 nonn,tabf
%O A224838 1,4
%A A224838 _John Molokach_, Jul 21 2013
%E A224838 Entry revised by _N. J. A. Sloane_, Jul 07 2024