cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224850 Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 1 element; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.

This page as a plain text file.
%I A224850 #30 Sep 06 2021 04:50:57
%S A224850 1,1,1,1,1,1,1,1,3,1,1,1,2,2,3,1,1,5,2,12,6,1,1,3,3,5,7,17,1,1,8,3,25,
%T A224850 11,106,44
%N A224850 Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 1 element; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
%C A224850 It appears that sequence T(2,k) consists of 2 interspersed Fibonacci sequences.
%C A224850 The diagonal T(n,n) is A006081. - _M. F. Hasler_, Jul 25 2013
%H A224850 Christopher Hunt Gribble, <a href="/A224850/a224850.cpp.txt">C++ program</a>
%F A224850 T(n,k) + A224861(n,k) + A224867(n,k) = A227690(n,k).
%F A224850 1*T(n,k) + 2*A224861(n,k) + 4*A224867(n,k) = A219924(n,k).
%e A224850 The triangle is:
%e A224850 n\k  1   2   3   4   5   6   7   8 ...
%e A224850 .
%e A224850 0    1   1   1   1   1   1   1   1 ...
%e A224850 1        1   1   1   1   1   1   1 ...
%e A224850 2            1   3   2   5   3   8 ...
%e A224850 3                1   2   2   3   3 ...
%e A224850 4                    3  12   5  25 ...
%e A224850 5                        6   7  11 ...
%e A224850 6                           17 106 ...
%e A224850 7                               44 ...
%e A224850 ...
%e A224850 T(3,5) = 2 because there are 2 different tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will only transform each tiling into itself.  Group D2 operations are:
%e A224850 .   the identity operation
%e A224850 .   rotation by 180 degrees
%e A224850 .   reflection about a horizontal axis through the center
%e A224850 .   reflection about a vertical axis through the center
%e A224850 The tilings are:
%e A224850 ._________.    ._________.
%e A224850 |_|_|_|_|_|    |_|     |_|
%e A224850 |_|_|_|_|_|    |_|     |_|
%e A224850 |_|_|_|_|_|    |_|_____|_|
%Y A224850 Cf. A219924, A224697, A227690.
%K A224850 nonn,tabl,more
%O A224850 1,9
%A A224850 _Christopher Hunt Gribble_, Jul 22 2013