cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224867 Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 4 elements; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.

This page as a plain text file.
%I A224867 #26 Sep 06 2021 04:55:55
%S A224867 0,0,0,0,0,0,0,0,0,1,0,0,0,5,21,0,0,0,10,65,440,0,0,0,27,222,1901,
%T A224867 14508,0,0,0,58,676,7716,81119,856559
%N A224867 Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 4 elements; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.
%H A224867 Christopher Hunt Gribble, <a href="/A224867/a224867.cpp.txt">C++ program</a>
%F A224867 A224850(n,k) + A224861(n,k) + T(n,k) = A227690(n,k).
%F A224867 1*A224850(n,k) + 2*A224861(n,k) + 4*T(n,k) = A219924(n,k).
%e A224867 The triangle is:
%e A224867 n\k    1      2      3      4      5      6      7      8 ...
%e A224867 .
%e A224867 0      0      0      0      0      0      0      0      0 ...
%e A224867 1             0      0      0      0      0      0      0 ...
%e A224867 2                    0      0      0      0      0      0 ...
%e A224867 3                           1      5     10     27     58 ...
%e A224867 4                                 21     65    222    676 ...
%e A224867 5                                       440   1901   7716 ...
%e A224867 6                                            14508  81119 ...
%e A224867 7                                                  856559 ...
%e A224867 ...
%e A224867 T(3,5) = 5 because there are 5 different sets of 4 tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will transform each tiling in a set into another in the same set.  Group  D2 operations are:
%e A224867 .   the identity operation
%e A224867 .   rotation by 180 degrees
%e A224867 .   reflection about a horizontal axis through the center
%e A224867 .   reflection about a vertical axis through the center
%e A224867 An example of a tiling in each set is:
%e A224867 ._________.  ._________.  ._________.  ._________.  ._________.
%e A224867 |   |_|_|_|  |_|   |_|_|  |   |   |_|  |   |_|_|_|  |   |     |
%e A224867 |_ _|_|_|_|  |_|_ _|_|_|  |_ _|_ _|_|  |___|   |_|  |___|     |
%e A224867 |_|_|_|_|_|  |_|_|_|_|_|  |_|_|_|_|_|  |_|_|___|_|  |_|_|_____|
%Y A224867 Cf. A219924, A224697, A227690.
%K A224867 nonn,tabl,more
%O A224867 1,14
%A A224867 _Christopher Hunt Gribble_, Jul 22 2013