A224868 a(1) = greatest k such that H(k) - H(4) < 1/3 + 1/4; a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(4); and for n > 2, a(n) = greatest k such that H(k) - H(a(n-1)) > H(a(n-1)) - H(a(n-2)), where H = harmonic number.
7, 11, 17, 26, 39, 58, 86, 127, 187, 275, 404, 593, 870, 1276, 1871, 2743, 4021, 5894, 8639, 12662, 18558, 27199, 39863, 58423, 85624, 125489, 183914, 269540, 395031, 578947, 848489, 1243522, 1822471, 2670962, 3914486, 5736959, 8407923, 12322411, 18059372
Offset: 1
Examples
The first three values (a(1),a(2),a(3)) = (7,11,17) match the beginning of the following inequality chain (and partition of {1/m: m>=3}): 1/3+1/4 > 1/5+1/6+1/7 > 1/8+1/9+1/10+1/11 > 1/12+ ... +1/17 > ...
Links
- Clark Kimberling, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A224820.
Programs
-
Mathematica
z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 4; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A224868 *) N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 5] (* A202537? *) N[Table[a[n]/a[n - 1], {n, 2, z, 25}], 5] (* A092526? *) (* Peter J. C. Moses, Jul 23 2013 *)
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (conjectured).
G.f.: (7 - 3 x + 2 x^2 - 4 x^3)/(1 - 2 x + x^2 - x^3 + x^4) (conjectured).
Comments