cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224868 a(1) = greatest k such that H(k) - H(4) < 1/3 + 1/4; a(2) = greatest k such that H(k) - H(a(1)) < H(a(1)) - H(4); and for n > 2, a(n) = greatest k such that H(k) - H(a(n-1)) > H(a(n-1)) - H(a(n-2)), where H = harmonic number.

Original entry on oeis.org

7, 11, 17, 26, 39, 58, 86, 127, 187, 275, 404, 593, 870, 1276, 1871, 2743, 4021, 5894, 8639, 12662, 18558, 27199, 39863, 58423, 85624, 125489, 183914, 269540, 395031, 578947, 848489, 1243522, 1822471, 2670962, 3914486, 5736959, 8407923, 12322411, 18059372
Offset: 1

Views

Author

Clark Kimberling, Jul 23 2013

Keywords

Comments

Suppose that x and y are positive integers and that x <=y. Let c(1) = y and c(2) = greatest k such that H(k) - H(y) < H(y) - H(x); for n > 2, let c(n) = greatest such that H(k) - H(c(n-1)) < H(c(n-1)) - H(c(n-2)). Then 1/x + ... + 1/c(1) > 1/(c(1)+1) + ... + 1/(c(2)) > 1/(c(2)+1) + ... + 1/(c(3)) > ... The decreasing sequences H(c(n)) - H(c(n-1)) and c(n)/c(n-1) converge. For what choices of (x,y) is the sequence c(n) linearly recurrent?
For A224868, (x,y) = (3,4); it appears that the sequence a(n) is linearly recurrent with signature (2,-1,1,-1). Possibly the constant at A202537 is the limit of the sequences H(c(n))-H(c(n-1)). Possibly the constant at A092526 is the limit of c(n)/c(n-1).

Examples

			The first three values (a(1),a(2),a(3)) = (7,11,17) match the beginning of the following inequality chain (and partition of {1/m: m>=3}):
1/3+1/4 > 1/5+1/6+1/7 > 1/8+1/9+1/10+1/11 > 1/12+ ... +1/17 > ...
		

Crossrefs

Cf. A224820.

Programs

  • Mathematica
    z = 100; h[n_] := h[n] = HarmonicNumber[N[n, 500]]; x = 3; y = 4; a[1] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[y] - h[x - 1], {w, 1}, WorkingPrecision -> 400]]; a[2] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[1]] - h[y], {w, a[1]}, WorkingPrecision -> 400]]; Do[s = 0; a[t] = -1 + Ceiling[w /. FindRoot[h[w] == 2 h[a[t - 1]] - h[a[t - 2]], {w, a[t - 1]}, WorkingPrecision -> 400]], {t, 3, z}]; m = Map[a, Range[z]] (* A224868 *)
    N[Table[h[a[t]] - h[a[t - 1]], {t, 2, z, 25}], 5]  (* A202537? *)
    N[Table[a[n]/a[n - 1], {n, 2, z, 25}], 5]  (* A092526? *)
    (* Peter J. C. Moses, Jul 23 2013 *)

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (conjectured).
G.f.: (7 - 3 x + 2 x^2 - 4 x^3)/(1 - 2 x + x^2 - x^3 + x^4) (conjectured).