This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224879 #47 Jun 11 2025 17:20:08 %S A224879 1,2,7,51,885,44206,6843555,3373513302,5366987461839, %T A224879 27936547529976720,482768359608369460173,28090323163597327933723100, %U A224879 5574677486781815353253212392653,3816761688188495487649082049091445498,9106495173413853187392282303788066742174903 %N A224879 Number of equivalence classes of n X n nonsingular matrices over GF(2), up to row and column permutation. %H A224879 Ludovic Schwob, <a href="/A224879/b224879.txt">Table of n, a(n) for n = 1..41</a> %H A224879 Finley Freibert, <a href="http://dx.doi.org/10.3934/amc.2013.7.267">The Classification of Complementary Information Set Codes of Lengths 14 and 16</a>, Advances in Mathematics of Communications, Vol. 7, No. 3 (2013), 267-278. %H A224879 NataĊĦa Ilievska and Danilo Gligoroski, <a href="https://doi.org/10.1007/978-3-319-09879-1_31">Error-Detecting Code Using Linear Quasigroups</a>, ICT Innovations 2014, Advances in Intelligent Systems and Computing Volume 311, 2015, pp 309-318. %H A224879 Ludovic Schwob, <a href="/A224879/a224879.txt">Sage program</a> %H A224879 Ludovic Schwob, <a href="https://arxiv.org/abs/2506.04007">On the enumeration of double cosets and self-inverse double cosets</a>, arXiv:2506.04007 [math.CO], 2025. See p. 16. %Y A224879 A002884 counts all matrices nonsingular over GF(2). %Y A224879 A116976 counts equivalence classes of binary matrices nonsingular over the reals. %K A224879 nonn %O A224879 1,2 %A A224879 _Finley Freibert_, Jul 23 2013 %E A224879 a(8) from _Brendan McKay_, May 25 2020 %E A224879 a(9) onwards from _Ludovic Schwob_, Sep 25 2023