cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224904 Primes p such that the decimal expansion of p^5 ends in p.

This page as a plain text file.
%I A224904 #15 Jul 26 2013 13:20:27
%S A224904 2,3,5,7,43,193,251,307,443,499,557,751,1249,1693,3307,4999,5443,5807,
%T A224904 7057,7499,20807,22943,31249,49999,52057,54193,56249,79193,97943,
%U A224904 281249,672943,4218751,4999999,5422943,8281249,8704193,17077057,74218751,407922943
%N A224904 Primes p such that the decimal expansion of p^5 ends in p.
%C A224904 Subsequence of A068407. - _Giovanni Resta_, Jul 25 2013
%H A224904 Giovanni Resta, <a href="/A224904/b224904.txt">Table of n, a(n) for n = 1..100</a>
%e A224904 193 is a prime and 193^5=267785184193 ends in 193, hence 193 is in the sequence.
%p A224904 with(numtheory):with(StringTools):KD := proc() local a,b,d,e,f; a:= ithprime(n);b:= a^5;d:=length(a);e:=floor(b/(10^d))*10^d;f:=b-e;if a=f then RETURN (a) fi:end:seq(KD(),n=1..500000);
%t A224904 d[n_] := Block[{x}, Select[x /. List@ ToRules@ Reduce[x^5 == x, {x}, Modulus -> 10^n], # > 10^(n-1) && PrimeQ@# &]]; Union @@ d /@ Range@ 9 (* _Giovanni Resta_, Jul 25 2013 *)
%o A224904 (PARI) is(n)=isprime(n) && Mod(n,10^#digits(n))^5==n \\ _Charles R Greathouse IV_, Jul 26 2013
%Y A224904 Cf. A068407.
%K A224904 nonn,base
%O A224904 1,1
%A A224904 _K. D. Bajpai_, Jul 25 2013
%E A224904 a(35)-a(39) from _Giovanni Resta_, Jul 25 2013