This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224912 #8 Feb 14 2021 18:34:32 %S A224912 2,3,4,8,16,32,36,64,72,108,128,144,200,256,288,396,512,528,576,588, %T A224912 1024,1040,1152,1296,2000,2048,2304,2320,2400,2592,3888,4096,4160, %U A224912 4608,4752,4800,5184,5600,6552,7200,8192,8448,9216,9600,9936,10368,11316,12000 %N A224912 Numbers m for which Sum_{i=1..k} (p(i)/(p(i)-1)) + Product_{i=1..k} (p(i)/(p(i)-1)) is an integer, where p(i) are the k prime factors of m (with multiplicity). %C A224912 Apart from 3 all terms are even. %H A224912 Paolo P. Lava, <a href="/A224912/b224912.txt">Table of n, a(n) for n = 1..200</a> %e A224912 Prime factors of 11316 are 2^2, 3, 23 and 41. %e A224912 Sum_{i=1..5} (p(i)/(p(i)-1)) = 2*(2/(2-1)) + 3/(3-1) + 23/(23-1) + 41/(41-1) = 3331/440. %e A224912 Sroduct_{i=1..5} (p(i)/(p(i)-1)) = 2*(2/(2-1)) * 3/(3-1) * 23/(23-1) * 41/(41-1) = 2829/440. %e A224912 Their sum is an integer: 3331/440 + 2829/440 = 14. %p A224912 with(numtheory); %p A224912 A224912:=proc(i) local b,c,d,n,p; %p A224912 for n from 2 to i do p:=ifactors(n)[2]; %p A224912 b:=add(op(2,d)*op(1,d)/(op(1,d)-1),d=p)+mul((op(1,d)/(op(1,d)-1))^op(2,d),d=p); %p A224912 if trunc(b)=b then print(n); fi; od; end: %p A224912 A224912(10^6); %Y A224912 Cf. A199767, A198391. %K A224912 nonn %O A224912 1,1 %A A224912 _Paolo P. Lava_, Apr 19 2013