cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224916 Expansion of chi(x)^2 / chi(-x^2)^6 in powers of x where chi() is a Ramanujan theta function.

This page as a plain text file.
%I A224916 #17 Feb 16 2025 08:33:19
%S A224916 1,2,7,14,31,58,112,196,347,580,966,1554,2485,3872,5993,9102,13719,
%T A224916 20384,30068,43836,63481,91048,129763,183448,257839,359862,499583,
%U A224916 689312,946416,1292388,1756838,2376598,3201557,4293942,5736736,7633702,10121408,13370634
%N A224916 Expansion of chi(x)^2 / chi(-x^2)^6 in powers of x where chi() is a Ramanujan theta function.
%C A224916 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%H A224916 G. C. Greubel, <a href="/A224916/b224916.txt">Table of n, a(n) for n = 0..1000</a>
%H A224916 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A224916 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A224916 Expansion of q^(-5/12) * (eta(q^4)^2 / (eta(q) * eta(q^2)))^2 in powers of q.
%F A224916 Expansion of psi(x^2)^2 / f(-x)^2 = 1 / (chi(-x)^2 * chi(-x^2)^4) = 1 / (chi(x)^4 * chi(-x)^6 ) in powers of x where psi(), chi(), f() are Ramanujan theta functions.
%F A224916 Expansion of (chi(x)^4 - chi(-x)^4) / (8*x) in powers of x^2 where chi() is a Ramanujan theta function.
%F A224916 Euler transform of period 4 sequence [ 2, 4, 2, 0, ...].
%F A224916 G.f.: Product_{k>0} (1 + x^k)^2 * (1 + x^(2*k))^4.
%F A224916 G.f.: (Sum_{k>0} x^(k^2 - k)) / (Product_{k>0} (1 - x^k))^2. - _Michael Somos_, Jul 04 2013
%F A224916 a(n) = A112160(2*n + 1) / 4.
%F A224916 Convolution square of A098613. - _Michael Somos_, Jul 04 2013
%F A224916 a(n) ~ exp(2*Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Sep 07 2015
%e A224916 1 + 2*x + 7*x^2 + 14*x^3 + 31*x^4 + 58*x^5 + 112*x^6 + 196*x^7 + 347*x^8 + ...
%e A224916 q^5 + 2*q^17 + 7*q^29 + 14*q^41 + 31*q^53 + 58*q^65 + 112*q^77 + 196*q^89 + ...
%t A224916 a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q]^2 / (4 q^(1/2) QPochhammer[q]^2), {q, 0, n}]
%t A224916 a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ q^2, q^4]^4 / QPochhammer[ q, q^2]^2, {q, 0, n}]
%t A224916 a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2]^4 - QPochhammer[ q, q^2]^4)/ 8, {q, 0, 2 n + 1}]
%o A224916 (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 / (eta(x + A) * eta(x^2 + A)))^2, n))}
%Y A224916 Cf. A098613, A112160.
%K A224916 nonn
%O A224916 0,2
%A A224916 _Michael Somos_, Apr 19 2013