A224924 Sum_{i=0..n} Sum_{j=0..n} (i AND j), where AND is the binary logical AND operator.
0, 1, 3, 12, 16, 33, 63, 112, 120, 153, 211, 300, 408, 553, 735, 960, 976, 1041, 1155, 1324, 1536, 1809, 2143, 2544, 2952, 3433, 3987, 4620, 5320, 6105, 6975, 7936, 7968, 8097, 8323, 8652, 9072, 9601, 10239, 10992, 11800, 12729, 13779, 14956, 16248, 17673, 19231, 20928
Offset: 0
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 0..1000
- R. J. Cano, Additional information
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, pp. 42-43.
Programs
-
Maple
read("transforms") : A224924 := proc(n) local a,i,j ; a := 0 ; for i from 0 to n do for j from 0 to n do a := a+ANDnos(i,j) ; end do: end do: a ; end proc: # R. J. Mathar, Aug 22 2013
-
Mathematica
a[n_] := Sum[BitAnd[i, j], {i, 0, n}, {j, 0, n}]; Table[a[n], {n, 0, 20}] (* Enrique Pérez Herrero, May 30 2015 *)
-
PARI
a(n)=sum(i=0,n,sum(j=0,n,bitand(i,j))); \\ R. J. Cano, Aug 21 2013
-
Python
for n in range(99): s = 0 for i in range(n+1): for j in range(n+1): s += i & j print(s, end=',')
Formula
a(2^n) = a(2^n - 1) + 2^n.
a(n) -a(n-1) = 2*A222423(n) -n. - R. J. Mathar, Aug 22 2013
Comments