cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224924 Sum_{i=0..n} Sum_{j=0..n} (i AND j), where AND is the binary logical AND operator.

Original entry on oeis.org

0, 1, 3, 12, 16, 33, 63, 112, 120, 153, 211, 300, 408, 553, 735, 960, 976, 1041, 1155, 1324, 1536, 1809, 2143, 2544, 2952, 3433, 3987, 4620, 5320, 6105, 6975, 7936, 7968, 8097, 8323, 8652, 9072, 9601, 10239, 10992, 11800, 12729, 13779, 14956, 16248, 17673, 19231, 20928
Offset: 0

Views

Author

Alex Ratushnyak, Apr 19 2013

Keywords

Comments

For n>0, a(2^n)-A000217(2^n)=a(2^n-1)-A000217(2^n-1) [See links]. - R. J. Cano, Aug 21 2013

Crossrefs

Programs

  • Maple
    read("transforms") :
    A224924 := proc(n)
        local a,i,j ;
        a := 0 ;
        for i from 0 to n do
        for j from 0 to n do
            a := a+ANDnos(i,j) ;
        end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Aug 22 2013
  • Mathematica
    a[n_] := Sum[BitAnd[i, j], {i, 0, n}, {j, 0, n}];
    Table[a[n], {n, 0, 20}]
    (* Enrique Pérez Herrero, May 30 2015 *)
  • PARI
    a(n)=sum(i=0,n,sum(j=0,n,bitand(i,j))); \\ R. J. Cano, Aug 21 2013
  • Python
    for n in range(99):
        s = 0
        for i in range(n+1):
          for j in range(n+1):
            s += i & j
        print(s, end=',')
    

Formula

a(2^n) = a(2^n - 1) + 2^n.
a(n) -a(n-1) = 2*A222423(n) -n. - R. J. Mathar, Aug 22 2013