This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224937 #15 Apr 15 2015 05:27:08 %S A224937 0,1,1,0,0,2,0,2,0,1,0,0,5,0,0,5,0,2,1,0,10,0,0,10,0,5,2,0,20,0,0,20, %T A224937 0,10,0,5,0,36,0,1,0,0,36,0,20,0,0,10,0,65,0,2,0,0,65,0,36,0,0,20,0, %U A224937 110,0,5,1,0,110,0,65,0,0,36,0,185,0,10,2,0,185,0,110,0,0,65,0,300,0,20 %N A224937 Number of partitions of n having T(n,k) odd parts in excess on even places over odd places. %C A224937 Row lengths are 2*floor((3 + sqrt(1+8*n))/4), k runs from -floor((3 + sqrt(1+8*n))/4) up to floor((-1 + sqrt(1+8*n))/4); row sums are A000041. %C A224937 P. D. Hanna remarks that "zig-zag" diagonals/antidiagonals produce A077028 (Rascal triangle). %e A224937 In the table below, replace each integer i with A000720(i) to get the current sequence: %e A224937 -3 -2 -1 0 1 2 (= k)(n= ) %e A224937 0 1 0 %e A224937 1 0 1 %e A224937 0 2 2 %e A224937 0 2 0 1 3 %e A224937 0 0 3 0 4 %e A224937 0 3 0 2 5 %e A224937 1 0 4 0 6 %e A224937 0 4 0 3 7 %e A224937 2 0 5 0 8 %e A224937 0 5 0 4 9 %e A224937 0 3 0 6 0 1 10 %e A224937 0 0 6 0 5 0 11 %e A224937 0 4 0 7 0 2 12 %e A224937 0 0 7 0 6 0 13 %e A224937 0 5 0 8 0 3 14 %e A224937 1 0 8 0 7 0 15 %e A224937 ... %e A224937 The table then starts as: %e A224937 0 0,1 %e A224937 1 1,0 %e A224937 2 0,2 %e A224937 3 0,2,0,1 %e A224937 4 0,0,5,0 %e A224937 5 0,5,0,2 %e A224937 6 1,0,10,0 %e A224937 7 0,10,0,5 %e A224937 8 2,0,20,0 %e A224937 9 0,20,0,10 %e A224937 10 0,5,0,36,0,1 %e A224937 ... %e A224937 The partitions of n=5 then give (0,5,0,2) for k=(-2,-1,0,1); this corresponds to 5 partitions with -1 excess odd parts on even over odd positions, and 2 with 1 excess, namely (4,1') and (2,1',1,1') where odd parts on even positions are marked by a quote. %t A224937 Table[ CoefficientList[ x^Floor[(3+Sqrt[1+8*n])/4]* Tr[x^Tr[(-1)^Mod[Flatten[Position[#,_?OddQ]],2]]&/@Partitions[n]],x],{n,0,12}]; (* or *) %t A224937 a712[n_Integer]:= a712[n] =If[n<0, 0, (# . Reverse[#])& [PartitionsP[ Range[0, n] ]]]; Table[If[Mod[n+k,2]==1,0,a712[-1+Max[0,(2+n-k*(2*k+1))/2]]],{n,0,12},{k,-Floor[(3+Sqrt[1+8*n])/4],Floor[(-1+Sqrt[1+8*n])/4]}] %Y A224937 Cf. A000720, A077028. %K A224937 nonn,tabf %O A224937 0,6 %A A224937 _Wouter Meeussen_, Apr 20 2013