This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224955 #22 Feb 27 2022 11:11:35 %S A224955 2,3,5,6,8,10,12,14,19,21,22,24,28,29,32,40,41,44,48,52,56,57,61,62, %T A224955 67,69,72,76,78,84,89,90,96,102,108,115,116,122,129,136,152,156,160, %U A224955 168,176,184,193,202,209,211,216,220,230,240,241,249,250,260,270,280 %N A224955 Numbers that are not squares, but can become squares by prepending or appending one additional digit. %C A224955 There are potentially 15 ways for each number to become a square--by prepending a digit between 1 and 9, or appending one of {0,1,4,5,6,9}. However, only 74 of the first 10000 terms can become a square in more than one way. %H A224955 Christian N. K. Anderson, <a href="/A224955/b224955.txt">Table of n, a(n) for n = 1..10000</a> %H A224955 Christian N. K. Anderson, <a href="/A224955/a224955.txt">List of squares</a> that can be formed by concatenating one digit to the first 10000 terms. %H A224955 Christian N. K. Anderson, <a href="/A224955/a224955.gif">Ulam spiral</a> of a(n), with brighter colors corresponding to the number of ways a term may become a square. %e A224955 a(4)=6 because, though 6 is not a square, it can become a square by prepending a 1 to become 16. We can also obtain 36 and 64. %p A224955 isA224955 := proc(n) %p A224955 local p,ndgs; %p A224955 if issqr(n) then %p A224955 return false; %p A224955 else %p A224955 ndgs := convert(n,base,10) ; %p A224955 for p from 1 to 9 do %p A224955 [op(ndgs),p] ; %p A224955 add(op(i,%)*10^(i-1),i=1..nops(%)) ; %p A224955 if issqr(%) then %p A224955 return true; %p A224955 end if; %p A224955 end do: %p A224955 for p in {0,1,4,5,6,9} do %p A224955 [p,op(ndgs)] ; %p A224955 add(op(i,%)*10^(i-1),i=1..nops(%)) ; %p A224955 if issqr(%) then %p A224955 return true; %p A224955 end if; %p A224955 end do: %p A224955 return false; %p A224955 end if; %p A224955 end proc: %p A224955 n := 1; %p A224955 c := 1; %p A224955 while n <= 10000 do %p A224955 if isA224955(c) then %p A224955 printf("%d %d\n",n,c) ; %p A224955 n := n+1 ; %p A224955 end if; %p A224955 c := c+1 ; %p A224955 end do: # _R. J. Mathar_, Mar 14 2016 %t A224955 Module[{nn=300,pre=Range[9],app={0,1,4,5,6,9}},Select[Range[nn],(!IntegerQ[ Sqrt[ #]]) && (AnyTrue[Sqrt[pre*10^IntegerLength[#]+#],IntegerQ] || AnyTrue[ Sqrt[ 10#+app],IntegerQ])&]] (* _Harvey P. Dale_, Feb 27 2022 *) %Y A224955 Cf. A023110, A000290. %K A224955 nonn,base %O A224955 1,1 %A A224955 _Kevin L. Schwartz_ and _Christian N. K. Anderson_, Apr 21 2013