cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224956 Number of partitions of n where the difference between consecutive parts is at most 2.

This page as a plain text file.
%I A224956 #40 Jan 26 2022 05:13:45
%S A224956 1,1,2,3,5,6,9,11,16,19,26,31,42,50,65,78,100,119,149,178,222,263,322,
%T A224956 382,465,549,660,778,932,1093,1299,1520,1798,2096,2464,2868,3357,3892,
%U A224956 4536,5247,6096,7028,8133,9357,10795,12388,14244,16309,18706,21367,24440,27857,31788,36157
%N A224956 Number of partitions of n where the difference between consecutive parts is at most 2.
%C A224956 Also (by taking the conjugate), a(n) is the number of partitions of n such that all parts, with the possible exception of the largest are repeated at most twice. - _Geoffrey Critzer_, Sep 30 2013
%H A224956 Vaclav Kotesovec, <a href="/A224956/b224956.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%F A224956 O.g.f.: 1 + sum(k>=1, x^k/(1-x^k) * prod(i=1..k-1, 1+x^i+x^(2*i) ) ). - _Geoffrey Critzer_, Sep 30 2013
%F A224956 a(n) = Sum_{k=0..2} A238353(n,k). - _Alois P. Heinz_, Mar 09 2014
%F A224956 a(n) ~ exp(2*Pi*sqrt(n)/3) / (6 * n^(3/4)). - _Vaclav Kotesovec_, Jan 26 2022
%e A224956 The a(7)=11 such partitions of 7 are
%e A224956 01:  [ 1 1 1 1 1 1 1 ]
%e A224956 02:  [ 2 1 1 1 1 1 ]
%e A224956 03:  [ 2 2 1 1 1 ]
%e A224956 04:  [ 2 2 2 1 ]
%e A224956 05:  [ 3 1 1 1 1 ]
%e A224956 06:  [ 3 2 1 1 ]
%e A224956 07:  [ 3 2 2 ]
%e A224956 08:  [ 3 3 1 ]
%e A224956 09:  [ 4 2 1 ]
%e A224956 10:  [ 4 3 ]
%e A224956 11:  [ 7 ]
%e A224956 The a(7)=11 partitions with no part (excepting the largest) repeated more than twice are the conjugates of the above respectively:
%e A224956 01:  [7]
%e A224956 02:  [6 1]
%e A224956 03:  [5 2]
%e A224956 04:  [4 3]
%e A224956 05:  [5 1 1]
%e A224956 06:  [4 2 1]
%e A224956 07:  [3 3 1]
%e A224956 08:  [3 2 2]
%e A224956 09:  [3 2 1 1]
%e A224956 10:  [2 2 2 1]
%e A224956 11:  [1 1 1 1 1 1 1]
%p A224956 b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A224956       add(b(n-i*j, i-1, `if`(j>0, 0, 1)), j=t..n/i)))
%p A224956     end:
%p A224956 a:= n-> add(b(n, k, 1), k=0..n):
%p A224956 seq(a(n), n=0..70);  #  _Alois P. Heinz_, May 01 2013
%t A224956 nn=53;CoefficientList[Series[1+Sum[x^k/(1-x^k)Product[1+x^i+x^(2i),{i,1,k-1}],{k,1,nn}],{x,0,nn}],x] (* _Geoffrey Critzer_, Sep 30 2013 *)
%t A224956 b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1, If[j>0, 0, 1]], {j, t, n/i}]]]; a[n_] := Sum[b[n, k, 1], {k, 0, n}]; Table[a[n], {n, 0, 70}] (* _Jean-François Alcover_, Jun 19 2015, after _Alois P. Heinz_ *)
%o A224956 (PARI)
%o A224956 N=66;  q = 'q + O('q^N);
%o A224956 Vec ( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, 1+q^i+q^(2*i) ) ) )
%o A224956 \\ _Joerg Arndt_, Mar 08 2014
%Y A224956 Sequences "number of partitions with max diff d": A000005 (d=0, for n>=1), A034296 (d=1), A224956 (d=2), A238863 (d=3), A238864 (d=4), A238865 (d=5), A238866 (d=6), A238867 (d=7), A238868 (d=8), A238869 (d=9), A000041 (d --> infinity).
%K A224956 nonn
%O A224956 0,3
%A A224956 _Joerg Arndt_, Apr 21 2013