This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224957 #26 May 24 2021 16:05:00 %S A224957 1,1,2,4,6,11,19,31,54,92,154,266,454,771,1319,2249,3834,6550,11176, %T A224957 19069,32558,55567,94838,161891,276325,471659,805102,1374234,2345724, %U A224957 4004031,6834605,11666260,19913668,33991462,58021534,99039592,169055094,288567886,492569833,840790082 %N A224957 Number of compositions [p(1), p(2), ..., p(k)] of n such that p(j) <= 2*p(j-1) and p(j-1) <= 2*p(j). %H A224957 Alois P. Heinz, <a href="/A224957/b224957.txt">Table of n, a(n) for n = 0..4306</a> %e A224957 There are a(6) = 19 such compositions of 6: %e A224957 01: [ 1 1 1 1 1 1 ] %e A224957 02: [ 1 1 1 1 2 ] %e A224957 03: [ 1 1 1 2 1 ] %e A224957 04: [ 1 1 2 1 1 ] %e A224957 05: [ 1 1 2 2 ] %e A224957 06: [ 1 2 1 1 1 ] %e A224957 07: [ 1 2 1 2 ] %e A224957 08: [ 1 2 2 1 ] %e A224957 09: [ 1 2 3 ] %e A224957 10: [ 2 1 1 1 1 ] %e A224957 11: [ 2 1 1 2 ] %e A224957 12: [ 2 1 2 1 ] %e A224957 13: [ 2 2 1 1 ] %e A224957 14: [ 2 2 2 ] %e A224957 15: [ 2 4 ] %e A224957 16: [ 3 2 1 ] %e A224957 17: [ 3 3 ] %e A224957 18: [ 4 2 ] %e A224957 19: [ 6 ] %p A224957 b:= proc(n, i) option remember; `if`(n=0, 1, add( %p A224957 b(n-j, j), j=`if`(i=0, 1..n, ceil(i/2)..min(n, 2*i)))) %p A224957 end: %p A224957 a:= n-> b(n, 0): %p A224957 seq(a(n), n=0..42); # _Alois P. Heinz_, Mar 15 2021 %t A224957 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]<=2*#[[i-1]]&&#[[i-1]]<=2*#[[i]],{i,2,Length[#]}]&]],{n,15}] (* _Gus Wiseman_, Mar 12 2021 *) %t A224957 b[n_, i_] := b[n, i] = If[n == 0, 1, Sum[b[n - j, j], {j, If[i == 0, Range[n], Range[Ceiling[i/2], Min[n, 2*i]]]}]]; %t A224957 a[n_] := b[n, 0]; %t A224957 a /@ Range[0, 42] (* _Jean-François Alcover_, May 24 2021, after _Alois P. Heinz_ *) %Y A224957 The case of strict relations is A342330, with strict case A342341. %Y A224957 The strict case is A342342. %Y A224957 A000929 counts partitions with adjacent parts x >= 2y. %Y A224957 A002843 counts compositions with adjacent parts x <= 2y. %Y A224957 A045690 counts sets with maximum n with adjacent elements y < 2x. %Y A224957 A154402 counts partitions with adjacent parts x = 2y. %Y A224957 A274199 counts compositions with adjacent parts x < 2y. %Y A224957 A342094 counts partitions with adjacent parts x <= 2y (strict: A342095). %Y A224957 A342096 counts partitions without adjacent x >= 2y (strict: A342097). %Y A224957 A342098 counts partitions with adjacent parts x > 2y. %Y A224957 A342331 counts compositions with adjacent parts x = 2y or y = 2x. %Y A224957 A342332 counts compositions with adjacent parts x > 2y or y > 2x. %Y A224957 A342333 counts compositions with adjacent parts x >= 2y or y >= 2x. %Y A224957 A342334 counts compositions with adjacent parts x >= 2y or y > 2x. %Y A224957 A342335 counts compositions with adjacent parts x >= 2y or y = 2x. %Y A224957 A342336 counts compositions with adjacent parts x > 2y or y = 2x. %Y A224957 A342337 counts partitions with adjacent parts x = y or x = 2y. %Y A224957 A342338 counts compositions with adjacent parts x < 2y and y <= 2x. %Y A224957 A342340 counts compositions with adjacent x = y or x = 2y or y = 2x. %Y A224957 Cf. A003114, A003242, A034296, A167606, A342191, A342339. %K A224957 nonn %O A224957 0,3 %A A224957 _Joerg Arndt_, Apr 21 2013 %E A224957 Name corrected by _Gus Wiseman_, Mar 11 2021