cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224964 Irregular triangle of the denominators of the unreduced fractions that lead to the second Bernoulli numbers.

This page as a plain text file.
%I A224964 #31 Jan 06 2018 22:07:17
%S A224964 2,2,2,6,2,6,2,6,15,2,6,15,2,6,15,105,2,6,15,105,2,6,15,105,105,2,6,
%T A224964 15,105,105,2,6,15,105,105,231,2,6,15,105,105,231,2,6,15,105,105,231,
%U A224964 15015,2,6,15,105,105,231,15015
%N A224964 Irregular triangle of the denominators of the unreduced fractions that lead to the second Bernoulli numbers.
%C A224964 The triangle of fractions A192456(n)/A191302(n) leading to the second Bernoulli numbers written in A191302(n) is the reduced case. The unreduced case is
%C A224964 B(0) =   1   = 2/2         (1 or 2/2 chosen arbitrarily)
%C A224964 B(1)         = 1/2
%C A224964 B(2) =  1/6  = 1/2 - 2/6
%C A224964 B(3) =   0   = 1/2 - 3/6
%C A224964 B(4) = -1/30 = 1/2 - 4/6 +  2/15
%C A224964 B(5) =   0   = 1/2 - 5/6 +  5/15
%C A224964 B(6) =  1/42 = 1/2 - 6/6 +  9/15 -  8/105
%C A224964 B(7) =   0   = 1/2 - 7/6 + 14/15 - 28/105
%C A224964 B(8) = -1/30 = 1/2 - 8/6 + 20/15 - 64/105 + 8/105.
%C A224964 The constant values along the columns of denominators are A190339(n).
%C A224964 With B(0)=1, B(2) = 1/2 -1/3, (reduced case), the last fraction of the B(2*n) is
%C A224964 1, -1/3, 2/15, -8/105, 8/105, ... = A212196(n)/A181131(n).
%C A224964 We can continue this method of sum of fractions yielding Bernoulli numbers.
%C A224964 Starting from 1/6 for B(2*n+2), we have:
%C A224964 B(2) = 1/6
%C A224964 B(4) = 1/6 - 3/15
%C A224964 B(6) = 1/6 - 5/15 + 20/105
%C A224964 B(8) = 1/6 - 7/15 + 56/105 - 28/105.
%C A224964 With the odd indices from 3, all these B(n) are the Bernoulli twin numbers -A051716(n+3)/A051717(n+3).
%F A224964 T(n,k) = A190339(k).
%e A224964 Triangle begins
%e A224964   2;
%e A224964   2;
%e A224964   2, 6;
%e A224964   2, 6;
%e A224964   2, 6, 15;
%e A224964   2, 6, 15;
%e A224964   2, 6, 15, 105;
%e A224964   2, 6, 15, 105;
%e A224964   2, 6, 15, 105, 105;
%e A224964   2, 6, 15, 105, 105;
%e A224964   2, 6, 15, 105, 105, 231;
%e A224964   2, 6, 15, 105, 105, 231;
%e A224964   2, 6, 15, 105, 105, 231, 15015;
%e A224964   2, 6, 15, 105, 105, 231, 15015;
%t A224964 nmax = 7; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; A190339 = diff // Diagonal // Denominator; Table[ Table[ Take[ A190339, n], {2}], {n, 1, nmax}] // Flatten (* _Jean-François Alcover_, Apr 25 2013 *)
%Y A224964 Cf. A051716, A051717, A141044, A181131, A190339, A191302, A192456, A212196.
%K A224964 nonn,frac,tabf
%O A224964 0,1
%A A224964 _Paul Curtz_, Apr 21 2013