This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A224964 #31 Jan 06 2018 22:07:17 %S A224964 2,2,2,6,2,6,2,6,15,2,6,15,2,6,15,105,2,6,15,105,2,6,15,105,105,2,6, %T A224964 15,105,105,2,6,15,105,105,231,2,6,15,105,105,231,2,6,15,105,105,231, %U A224964 15015,2,6,15,105,105,231,15015 %N A224964 Irregular triangle of the denominators of the unreduced fractions that lead to the second Bernoulli numbers. %C A224964 The triangle of fractions A192456(n)/A191302(n) leading to the second Bernoulli numbers written in A191302(n) is the reduced case. The unreduced case is %C A224964 B(0) = 1 = 2/2 (1 or 2/2 chosen arbitrarily) %C A224964 B(1) = 1/2 %C A224964 B(2) = 1/6 = 1/2 - 2/6 %C A224964 B(3) = 0 = 1/2 - 3/6 %C A224964 B(4) = -1/30 = 1/2 - 4/6 + 2/15 %C A224964 B(5) = 0 = 1/2 - 5/6 + 5/15 %C A224964 B(6) = 1/42 = 1/2 - 6/6 + 9/15 - 8/105 %C A224964 B(7) = 0 = 1/2 - 7/6 + 14/15 - 28/105 %C A224964 B(8) = -1/30 = 1/2 - 8/6 + 20/15 - 64/105 + 8/105. %C A224964 The constant values along the columns of denominators are A190339(n). %C A224964 With B(0)=1, B(2) = 1/2 -1/3, (reduced case), the last fraction of the B(2*n) is %C A224964 1, -1/3, 2/15, -8/105, 8/105, ... = A212196(n)/A181131(n). %C A224964 We can continue this method of sum of fractions yielding Bernoulli numbers. %C A224964 Starting from 1/6 for B(2*n+2), we have: %C A224964 B(2) = 1/6 %C A224964 B(4) = 1/6 - 3/15 %C A224964 B(6) = 1/6 - 5/15 + 20/105 %C A224964 B(8) = 1/6 - 7/15 + 56/105 - 28/105. %C A224964 With the odd indices from 3, all these B(n) are the Bernoulli twin numbers -A051716(n+3)/A051717(n+3). %F A224964 T(n,k) = A190339(k). %e A224964 Triangle begins %e A224964 2; %e A224964 2; %e A224964 2, 6; %e A224964 2, 6; %e A224964 2, 6, 15; %e A224964 2, 6, 15; %e A224964 2, 6, 15, 105; %e A224964 2, 6, 15, 105; %e A224964 2, 6, 15, 105, 105; %e A224964 2, 6, 15, 105, 105; %e A224964 2, 6, 15, 105, 105, 231; %e A224964 2, 6, 15, 105, 105, 231; %e A224964 2, 6, 15, 105, 105, 231, 15015; %e A224964 2, 6, 15, 105, 105, 231, 15015; %t A224964 nmax = 7; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; A190339 = diff // Diagonal // Denominator; Table[ Table[ Take[ A190339, n], {2}], {n, 1, nmax}] // Flatten (* _Jean-François Alcover_, Apr 25 2013 *) %Y A224964 Cf. A051716, A051717, A141044, A181131, A190339, A191302, A192456, A212196. %K A224964 nonn,frac,tabf %O A224964 0,1 %A A224964 _Paul Curtz_, Apr 21 2013