A224965 Let p = prime(n). a(n) = number of primes q less than p, such that both p*q+p+q and p*q-p-q are primes.
0, 0, 2, 3, 1, 2, 2, 2, 1, 2, 1, 1, 3, 2, 1, 1, 1, 3, 2, 2, 1, 3, 1, 0, 4, 0, 1, 2, 5, 0, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 4, 2, 1, 0, 2, 5, 1, 1, 3, 1, 3, 3, 3, 0, 1, 2, 4, 1, 4, 4, 2, 2, 2, 6, 2, 5, 2, 3, 3, 2, 4, 5, 3, 2, 1, 3, 1, 3, 3, 3, 2, 2, 3, 2
Offset: 1
Keywords
Examples
For n=3, p=5, there are a(3)=2 solutions 2,3 since 5*2+5+2=17, 5*2-5-2=3 and 5*3+5+3=23, 5*3-5-3=7. Also for n=5, p=11, there is a(5)=1 solution in the form of 11*3+11+3=47, 11*3-11-3=19.
Programs
-
Mathematica
Table[p = Prime[n]; c = 0; i = 1; While[i < n, q1 = p*Prime[i]; q2 = p + Prime[i]; If[PrimeQ[q1 + q2] && PrimeQ[q1 - q2], c = c + 1]; i++]; c, {n, 85}]