A224986 a(n) = Product_{k=1..n-4} (n-k-2)!^(k*k!).
1, 1, 1, 1, 2, 96, 8153726976, 320352637207127391364950814323398779319161580421120
Offset: 1
Examples
a(n) = 1 for n <= 4, which agrees with the fact that the minimal strings containing all permutations in these cases are unique (see A180632).
References
- D. Ashlock and J. Tillotson, Construction of small superpermutations and minimal injective superstrings. Congressus Numerantium, 93 (1993), 91-98.
Links
- Robin Houston, Tackling the Minimal Superpermutation Problem, arXiv:1408.5108 [math.CO], 2014.
- Nathaniel Johnston, Non-uniqueness of minimal superpermutations, arXiv:1303.4150 [math.CO], 2013; Discrete Math., 313 (2013), 1553-1557.
- Nathaniel Johnston, The Minimal Superpermutation Problem, 2013.
Programs
-
Maple
seq(product((n-k-2)!^(k*k!),k=1..max(n-4,0)),n=1..8);
-
PARI
apply( {A224986(n)=prod(k=1,n-4,(n-k-2)!^(k*k!))}, [1..8]) \\ M. F. Hasler, Jul 29 2020
Comments