cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A224991 Primes p such that q=2*p^2-1, r=2*p*q-1 and 2*p*r-1 are also prime.

This page as a plain text file.
%I A224991 #11 Feb 08 2022 12:03:50
%S A224991 181,32341,52021,96907,97171,100981,109507,192601,194671,238237,
%T A224991 280627,304651,320911,418321,449971,547537,579961,626191,668611,
%U A224991 767857,769807,771091,806107,885097,954157,991381,993247,1028047,1075357,1259677,1285021,1368727,1414837,1415191,1425007,1449841
%N A224991 Primes p such that q=2*p^2-1, r=2*p*q-1 and 2*p*r-1 are also prime.
%C A224991 Subsequence of A224990, and more elementary version of A224626.
%H A224991 Harvey P. Dale, <a href="/A224991/b224991.txt">Table of n, a(n) for n = 1..500</a>
%t A224991 qr[p_]:=Module[{q=2p^2-1,r},r=2p*q-1;{q,r,2p*r-1}]; Select[Prime[ Range[ 120000]],AllTrue[qr[#],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Apr 10 2015 *)
%o A224991 (PARI) forprime(p=1,2e6,isprime(q=2*p^2-1)&&isprime(r=2*p*q-1)&&isprime(2*p*r-1)&&print1(p","))
%Y A224991 Cf. A224626, A224990.
%K A224991 nonn
%O A224991 1,1
%A A224991 _M. F. Hasler_, Apr 22 2013