A225008 Number of n X 6 0..1 arrays with rows unimodal and columns nondecreasing.
22, 148, 610, 1897, 4900, 11088, 22716, 43065, 76714, 129844, 210574, 329329, 499240, 736576, 1061208, 1497105, 2072862, 2822260, 3784858, 5006617, 6540556, 8447440, 10796500, 13666185, 17144946, 21332052, 26338438, 32287585, 39316432
Offset: 1
Keywords
Examples
Some solutions for n=3: ..0..1..0..0..0..0....0..0..1..0..0..0....0..0..1..1..1..0....0..0..1..1..0..0 ..0..1..0..0..0..0....0..1..1..1..1..0....0..0..1..1..1..0....0..1..1..1..1..0 ..0..1..1..1..0..0....1..1..1..1..1..0....0..1..1..1..1..1....0..1..1..1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 6 of A225010.
Formula
Empirical: a(n) = (2/45)*n^6 + (8/15)*n^5 + (91/36)*n^4 + 6*n^3 + (1337/180)*n^2 + (67/15)*n + 1.
Conjectures from Colin Barker, Sep 05 2018: (Start)
G.f.: x*(22 - 6*x + 36*x^2 - 35*x^3 + 21*x^4 - 7*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)