cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225009 Number of n X 7 0..1 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

29, 239, 1163, 4166, 12174, 30738, 69498, 144111, 278707, 508937, 885677, 1479452, 2385644, 3730548, 5678340, 8439021, 12277401, 17523187, 24582239, 33949058, 46220570, 62111270, 82469790, 108296955, 140765391, 181240749, 231304609
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2013

Keywords

Examples

			Some solutions for n=3:
..0..1..1..0..0..0..0....1..1..1..1..0..0..0....0..0..0..0..0..0..0
..0..1..1..1..1..0..0....1..1..1..1..1..0..0....1..1..0..0..0..0..0
..1..1..1..1..1..1..1....1..1..1..1..1..1..1....1..1..0..0..0..0..0
		

Crossrefs

Column 7 of A225010.

Formula

Empirical: a(n) = (4/315)*n^7 + (1/5)*n^6 + (58/45)*n^5 + (35/8)*n^4 + (1507/180)*n^3 + (357/40)*n^2 + (2027/420)*n + 1.
Conjectures from Colin Barker, Sep 05 2018: (Start)
G.f.: x*(29 + 7*x + 63*x^2 - 70*x^3 + 56*x^4 - 28*x^5 + 8*x^6 - x^7) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)