cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225011 Number of 4 X n 0..1 arrays with rows unimodal and columns nondecreasing.

Original entry on oeis.org

5, 25, 95, 295, 791, 1897, 4166, 8518, 16414, 30086, 52834, 89402, 146446, 233108, 361711, 548591, 815083, 1188679, 1704377, 2406241, 3349193, 4601059, 6244892, 8381596, 11132876, 14644540, 19090180, 24675260, 31641640, 40272566, 50898157
Offset: 1

Views

Author

R. H. Hardin, Apr 23 2013

Keywords

Comments

Row 4 of A225010.
Apparently also column 5 of A071920. - R. J. Mathar, May 17 2014

Examples

			Some solutions for n=3
..0..1..0....0..0..0....0..0..1....0..0..0....1..0..0....1..0..0....0..0..1
..0..1..1....0..1..0....0..1..1....0..0..0....1..0..0....1..0..0....0..0..1
..1..1..1....0..1..0....1..1..1....0..0..0....1..1..0....1..0..0....0..0..1
..1..1..1....0..1..0....1..1..1....0..0..1....1..1..0....1..1..1....0..1..1
		

Crossrefs

Formula

Empirical: a(n) = (1/40320)*n^8 + (1/1440)*n^7 + (3/320)*n^6 + (5/72)*n^5 + (629/1920)*n^4 + (1279/1440)*n^3 + (16763/10080)*n^2 + (25/24)*n + 1 = 1 + n* (n+1) *(n^6 + 27*n^5 + 351*n^4 + 2449*n^3 + 10760*n^2 + 25052*n + 42000)/40320.
Empirical: G.f.: -x*(x^4 - 5*x^3 + 10*x^2 - 10*x + 5) *(x^4 - 3*x^3 + 4*x^2 - 2*x + 1) / (x-1)^9. - R. J. Mathar, May 17 2014