A225011 Number of 4 X n 0..1 arrays with rows unimodal and columns nondecreasing.
5, 25, 95, 295, 791, 1897, 4166, 8518, 16414, 30086, 52834, 89402, 146446, 233108, 361711, 548591, 815083, 1188679, 1704377, 2406241, 3349193, 4601059, 6244892, 8381596, 11132876, 14644540, 19090180, 24675260, 31641640, 40272566, 50898157
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..1..0....0..0..0....0..0..1....0..0..0....1..0..0....1..0..0....0..0..1 ..0..1..1....0..1..0....0..1..1....0..0..0....1..0..0....1..0..0....0..0..1 ..1..1..1....0..1..0....1..1..1....0..0..0....1..1..0....1..0..0....0..0..1 ..1..1..1....0..1..0....1..1..1....0..0..1....1..1..0....1..1..1....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/40320)*n^8 + (1/1440)*n^7 + (3/320)*n^6 + (5/72)*n^5 + (629/1920)*n^4 + (1279/1440)*n^3 + (16763/10080)*n^2 + (25/24)*n + 1 = 1 + n* (n+1) *(n^6 + 27*n^5 + 351*n^4 + 2449*n^3 + 10760*n^2 + 25052*n + 42000)/40320.
Empirical: G.f.: -x*(x^4 - 5*x^3 + 10*x^2 - 10*x + 5) *(x^4 - 3*x^3 + 4*x^2 - 2*x + 1) / (x-1)^9. - R. J. Mathar, May 17 2014
Comments