A225013 Number of 6Xn 0..1 arrays with rows unimodal and columns nondecreasing.
7, 49, 252, 1036, 3612, 11088, 30738, 78354, 186142, 416394, 884236, 1794196, 3497248, 6577474, 11980667, 21201211, 36548573, 61520899, 101320712, 163556776, 259187048, 403770544, 619111172, 935394436, 1393938716, 2050706932
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..1..0....1..1..0 ..0..1..0....0..0..0....0..1..0....0..0..0....0..0..0....0..1..1....1..1..0 ..0..1..0....1..0..0....0..1..1....0..1..0....1..0..0....0..1..1....1..1..0 ..0..1..0....1..1..0....0..1..1....0..1..0....1..0..0....0..1..1....1..1..0 ..1..1..0....1..1..0....1..1..1....0..1..0....1..0..0....0..1..1....1..1..1 ..1..1..1....1..1..0....1..1..1....0..1..0....1..0..0....1..1..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/479001600)*n^12 + (1/7257600)*n^11 + (187/43545600)*n^10 + (13/161280)*n^9 + (14671/14515200)*n^8 + (3043/345600)*n^7 + (2380201/43545600)*n^6 + (347911/1451520)*n^5 + (8129699/10886400)*n^4 + (923183/604800)*n^3 + (913741/415800)*n^2 + (49/40)*n + 1
Comments