A225014 Number of 7Xn 0..1 arrays with rows unimodal and columns nondecreasing.
8, 64, 372, 1716, 6672, 22716, 69498, 194634, 505912, 1233584, 2845492, 6251596, 13154948, 26635774, 52097267, 98759971, 181971248, 326703424, 572756312, 982365976, 1651162688, 2723729944, 4415408372, 7042481236, 11063492816
Offset: 1
Keywords
Examples
Some solutions for n=3 ..1..1..0....0..0..1....0..1..0....1..0..0....0..0..0....0..0..0....0..0..0 ..1..1..0....0..0..1....1..1..0....1..0..0....0..1..0....0..0..0....0..1..0 ..1..1..0....0..0..1....1..1..0....1..1..0....1..1..0....0..0..0....0..1..0 ..1..1..0....0..0..1....1..1..0....1..1..0....1..1..0....0..0..1....1..1..0 ..1..1..0....0..0..1....1..1..1....1..1..0....1..1..0....0..0..1....1..1..0 ..1..1..0....0..1..1....1..1..1....1..1..1....1..1..1....0..1..1....1..1..0 ..1..1..0....0..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = (1/87178291200)*n^14 + (1/958003200)*n^13 + (43/958003200)*n^12 + (103/87091200)*n^11 + (1847/87091200)*n^10 + (7891/29030400)*n^9 + (1560493/609638400)*n^8 + (222427/12441600)*n^7 + (2023297/21772800)*n^6 + (1926401/5443200)*n^5 + (29332549/29937600)*n^4 + (1353853/739200)*n^3 + (183490757/75675600)*n^2 + (363/280)*n + 1
Comments