cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225016 Decimal expansion of Pi^3/8.

Original entry on oeis.org

3, 8, 7, 5, 7, 8, 4, 5, 8, 5, 0, 3, 7, 4, 7, 7, 5, 2, 1, 9, 3, 4, 5, 3, 9, 3, 8, 3, 3, 8, 7, 6, 7, 4, 4, 0, 0, 2, 7, 8, 1, 6, 1, 0, 7, 0, 7, 3, 5, 6, 3, 8, 4, 6, 1, 7, 6, 8, 0, 6, 7, 2, 6, 2, 9, 7, 5, 7, 9, 9, 3, 6, 4, 6, 8, 3, 2, 1, 3, 2, 5, 4, 6, 9, 5, 8, 3, 7, 6, 2, 9, 0, 7, 5, 3, 6, 0, 7, 7, 4
Offset: 1

Views

Author

Jean-François Alcover, Apr 24 2013

Keywords

Examples

			3.875784585037477521934539383387674400278161070735638461768067262975799364683...
		

Crossrefs

Programs

Formula

Equals Integral_{x>0} log(x)^2/(1+x^2) dx.
Equals Integral_{x=0..Pi/2} log(tan(x))^2 dx.
Equals Integral_{x=0..Pi/2} log(sin(x)^3)*log(sin(x))-(3*Pi/2)*log(2)^2 dx.
Equals (27/7) * Sum_{k>=0} binomial(2*k, k)/((2*k+1)^3*16^k);
Equals (27/7) * 4F3([1/2, 1/2, 1/2, 1/2], [3/2, 3/2, 3/2], 1/4), where pFq() is the generalized hypergeometric function.
From Amiram Eldar, Aug 21 2020: (Start)
Equals Integral_{x=0..oo} x^2/cosh(x) dx.
Equals 2 + Integral_{x=0..oo} x^2 * exp(-x) * tanh(x) dx. (End)
From Gleb Koloskov, Jun 15 2021: (Start)
Equals 2*Integral_{x=0..1} log(x)^2/(1+x^2) dx.
Equals 2*Integral_{x=1..oo} log(x)^2/(1+x^2) dx.
Equals 2*(-1)^n*Integral_{x=-1/e..0} W(n,x)*(1-W(n,x))*log(-W(n,x))^2/x/(1-W(n,x)^4) dx, where W=LambertW, for n=0 and n=-1. (End)

Extensions

Offset corrected by Rick L. Shepherd, Jan 01 2014