cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225037 Decimal expansion of the number Sum_{n>=1} ksexp(n,3/2)^(-1).

This page as a plain text file.
%I A225037 #17 Apr 20 2018 00:47:05
%S A225037 1,6,8,7,6,3,5,2,1,5,1,1,9,1,1,2,4,6,5,5,1,8,8,9,4,9,7,2,8,2,4,3
%N A225037 Decimal expansion of the number Sum_{n>=1} ksexp(n,3/2)^(-1).
%C A225037 The function 'ksexp' is the n-base Kneser tetration, see references below.
%D A225037 Hellmuth Kneser, Reelle analytische Lösungen der Gleichung phi(phi(x))=e^x und verwandter Funktionalgleichungen. J. Reine Angew. Math., 187 (1949), 56-67.
%D A225037 H. Trappmann & D. Kouznetsov, Uniqueness of Holomorphic Superlogarithms (2009)
%H A225037 Sheldon Levenstein, <a href="http://math.eretrandre.org/tetrationforum/attachment.php?aid=997">Fast accurate Kneser superexponential algorithm</a>
%e A225037 1.687635215119112465518894...
%o A225037 (PARI) \\ Download the algorithm for ksexp (see the link)
%o A225037 \r kneserquiet.gp; \\ Load the algorithm
%o A225037 b(i)=init(i); sexp(3/2)
%o A225037 return(1+sumalt(i=1,1/b(i)));
%K A225037 nonn,cons,more
%O A225037 1,2
%A A225037 _Balarka Sen_, Apr 25 2013