cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225042 Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1), H=(1,0) and S=(0,1).

This page as a plain text file.
%I A225042 #19 Sep 13 2021 08:32:14
%S A225042 1,2,8,48,360,3088,28928,288208,3003952,32402384,359019952,4064452272,
%T A225042 46829600704,547498996736,6480275672192,77511461858592,
%U A225042 935562094075392,11381614588917296,139425068741674448,1718444636265140992,21295889048851102176,265200380258393530896
%N A225042 Number of lattice paths from (0,0) to (n,n) that do not go below the x-axis or above the diagonal x=y and consist of steps U=(1,1), D=(1,-1), H=(1,0) and S=(0,1).
%H A225042 Alois P. Heinz, <a href="/A225042/b225042.txt">Table of n, a(n) for n = 0..890</a>
%F A225042 a(n) ~ c * d^n / n^(3/2), where d = 1/6*(19009+153*sqrt(17))^(1/3) + 356/(3*(19009+153*sqrt(17))^(1/3)) + 14/3 = 13.56165398271839628518..., c = 0.03237684690282108810066870410351693504744294274892020985727414558915214336... - _Vaclav Kotesovec_, Sep 07 2014, updated Sep 13 2021
%e A225042 a(0) = 1: the empty path.
%e A225042 a(1) = 2: U, HS.
%e A225042 a(2) = 8: UU, HSU, UHS, HSHS, HUS, HHSS, UDSS, HSDSS.
%p A225042 b:= proc(x, y) option remember; `if`(y>x, 0, `if`(x=0, 1,
%p A225042        b(x-1, y)+`if`(y>0, b(x-1, y-1)+b(x, y-1), 0)+b(x-1, y+1)))
%p A225042     end:
%p A225042 a:= n-> b(n, n):
%p A225042 seq(a(n), n=0..25);
%t A225042 b[x_, y_] := b[x, y] = If[y > x, 0, If[x == 0, 1, b[x - 1, y] + If[y > 0, b[x - 1, y - 1] + b[x, y - 1], 0] + b[x - 1, y + 1]]];
%t A225042 a[n_] := b[n, n];
%t A225042 Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Mar 29 2017, translated from Maple *)
%Y A225042 Cf. A006318 (without D-steps), A224769 (without H-steps), A224776 (without U-steps), A225041 (paths to (n,0)), A286765.
%K A225042 nonn
%O A225042 0,2
%A A225042 _Alois P. Heinz_, Apr 25 2013