cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225071 Number of Gaussian primes at taxicab distance 2n-1 from the origin.

This page as a plain text file.
%I A225071 #3 May 03 2013 18:55:39
%S A225071 0,12,16,20,16,28,24,32,32,36,24,36,64,32,48,44,32,72,64,48,72,60,56,
%T A225071 60,40,56,72,112,64,76,88,56,136,92,80,76,88,72,64,108,72,124,160,88,
%U A225071 112,104,64,144,112,80,144,132,80,140,128,104,160,160,104,112,136
%N A225071 Number of Gaussian primes at taxicab distance 2n-1 from the origin.
%C A225071 Except for 1+I, 1-I, -1+I, and -1-I, all Gaussian primes are an odd taxicab distance from the origin.
%H A225071 T. D. Noe, <a href="/A225071/b225071.txt">Table of n, a(n) for n = 1..10000</a>
%t A225071 Table[cnt = 0; Do[If[PrimeQ[n - i + I*i, GaussianIntegers -> True], cnt++], {i, 0, n}]; Do[If[PrimeQ[i - n + I*i, GaussianIntegers -> True], cnt++], {i, n - 1, 0, -1}]; Do[If[PrimeQ[i - n - I*i, GaussianIntegers -> True], cnt++], {i, 1, n}]; Do[If[PrimeQ[n - i - I*i, GaussianIntegers -> True], cnt++], {i, n - 1, 1, -1}]; cnt, {n, 1, 200, 2}]
%Y A225071 Cf. A218858.
%K A225071 nonn
%O A225071 1,2
%A A225071 _T. D. Noe_, May 03 2013