cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225077 Smaller of the two consecutive primes whose sum is a triangular number.

This page as a plain text file.
%I A225077 #33 May 04 2020 21:01:40
%S A225077 17,37,59,103,137,149,313,467,491,883,911,1277,1423,1619,1783,2137,
%T A225077 2473,2729,4127,4933,5437,5507,6043,6359,10039,10453,11717,13397,
%U A225077 15809,17489,20807,21821,23027,27631,28307,28813,29669,33029,36947,39103,44203,48281
%N A225077 Smaller of the two consecutive primes whose sum is a triangular number.
%H A225077 Robert Israel, <a href="/A225077/b225077.txt">Table of n, a(n) for n = 1..10000</a>
%F A225077 a(n) + nextprime(a(n)) = A000217(A175132(n)).
%p A225077 f:= proc(n) local m,p,q;
%p A225077   m:= n*(n+1)/2;
%p A225077   p:= prevprime(ceil(m/2));
%p A225077   q:= nextprime(p);
%p A225077   if p+q=m then p fi
%p A225077 end proc:
%p A225077 map(f, [$3..500]); # _Robert Israel_, May 04 2020
%t A225077 tri[n_] := IntegerQ[Sqrt[1 + 8 n]]; t = {}; p1 = 2; While[Length[t] < 50, p2 = NextPrime[p1]; If[tri[p1 + p2], AppendTo[t, p1]]; p1 = p2]; t (* _T. D. Noe_, May 28 2013 *)
%Y A225077 Cf. A175132 (numbers n such that sum of two consecutive primes is triangular(n)).
%Y A225077 Cf. A181902 and A154634 (average of two consecutive primes is a triangular number).
%Y A225077 Cf. A075190 and A225195 (average of two consecutive primes is a square).
%Y A225077 Cf. A074924 and A061275 (sum of two consecutive primes is a square).
%K A225077 nonn
%O A225077 1,1
%A A225077 _Alex Ratushnyak_, May 28 2013