This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225082 #12 Apr 30 2013 12:02:25 %S A225082 101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181, %T A225082 191,193,197,199,223,229,233,239,263,269,283,293,307,311,317,331,337, %U A225082 347,367,397,401,421,431,433,443,457,461,463,467,487,491,503,509,523,563 %N A225082 Centrally deletable primes. %C A225082 Prime numbers that remain primes when their central digit is (or two central digits are) deleted. %C A225082 At the 1886th prime number (16229), there are exactly 943 centrally deletable primes, and 943 that become composites. It appears that there are always more non-deletable primes thereafter. %C A225082 Subset of A080603 and of A077359. %H A225082 Christian N. K. Anderson, <a href="/A225082/b225082.txt">Table of n, a(n) for n = 1..10000</a> %e A225082 a(5) = 1(1)3, and 13 is a prime. %t A225082 dcd[n_] := Block[{d = IntegerDigits@n, z}, z = Length@d; FromDigits@ Delete[d, Floor[(z + {{1}, {2}})/2]]]; Select[Prime@ Range@ 103, PrimeQ@ dcd@ # &] (* _Giovanni Resta_, Apr 29 2013 *) %o A225082 (R) library(gmp) %o A225082 sumsubstrpow<-function(n) { %o A225082 no0<-function(s){ while(substr(s,1,1)=="0" && nchar(s)>1) s=substr(s,2,nchar(s)); s} %o A225082 tot=as.bigz(0); s=as.character(n); len=nchar(s) %o A225082 for(i in 1:len) for(j in i:len) tot=tot+as.bigz(no0(substr(s,i,j)))^(j-i+1) %o A225082 tot %o A225082 } %o A225082 #recursive %o A225082 n=as.bigz(10); for(y in 1:4) n[y+1]=sumsubstrpow(n[y]) %Y A225082 Cf. A080603, A077359 %K A225082 nonn,base %O A225082 1,1 %A A225082 _Kevin L. Schwartz_ and _Christian N. K. Anderson_, Apr 26 2013