This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225085 #12 Feb 22 2014 13:06:02 %S A225085 1,2,2,3,4,4,5,7,8,8,7,13,15,16,16,11,23,29,31,32,32,15,41,55,61,63, %T A225085 64,64,22,72,105,119,125,127,128,128,30,127,199,233,247,253,255,256, %U A225085 256,42,222,378,455,489,503,509,511,512,512,56,388,716,889,967,1001,1015,1021,1023,1024,1024 %N A225085 Triangle read by rows: T(n,k) is the number of compositions of n with maximal up-step <= k; n>=1, 0<=k<n. %C A225085 T(n,k) is the number of compositions [p(1), p(2), ..., p(k)] of n such that max(p(j) - p(j-1)) <= k. %C A225085 Rows are partial sums of rows of A225084. %C A225085 The first column is A000041 (partition numbers), the second column is A003116, and the third column is A224959. %C A225085 The diagonal is A011782. %H A225085 Joerg Arndt and Alois P. Heinz, <a href="/A225085/b225085.txt">Rows n = 1..141, flattened</a> %e A225085 Triangle begins %e A225085 01: 1, %e A225085 02: 2, 2, %e A225085 03: 3, 4, 4, %e A225085 04: 5, 7, 8, 8, %e A225085 05: 7, 13, 15, 16, 16, %e A225085 06: 11, 23, 29, 31, 32, 32, %e A225085 07: 15, 41, 55, 61, 63, 64, 64, %e A225085 08: 22, 72, 105, 119, 125, 127, 128, 128, %e A225085 09: 30, 127, 199, 233, 247, 253, 255, 256, 256, %e A225085 10: 42, 222, 378, 455, 489, 503, 509, 511, 512, 512, %e A225085 ... %e A225085 The fifth row corresponds to the following statistics: %e A225085 #: M composition %e A225085 01: 0 [ 1 1 1 1 1 ] %e A225085 02: 1 [ 1 1 1 2 ] %e A225085 03: 1 [ 1 1 2 1 ] %e A225085 04: 2 [ 1 1 3 ] %e A225085 05: 1 [ 1 2 1 1 ] %e A225085 06: 1 [ 1 2 2 ] %e A225085 07: 2 [ 1 3 1 ] %e A225085 08: 3 [ 1 4 ] %e A225085 09: 0 [ 2 1 1 1 ] %e A225085 10: 1 [ 2 1 2 ] %e A225085 11: 0 [ 2 2 1 ] %e A225085 12: 1 [ 2 3 ] %e A225085 13: 0 [ 3 1 1 ] %e A225085 14: 0 [ 3 2 ] %e A225085 15: 0 [ 4 1 ] %e A225085 16: 0 [ 5 ] %e A225085 There are 7 compositions with no up-step (M<=0), 13 with M<=1, 15 with M<=2, 16 with M<=3, and 16 with M<=4. %K A225085 nonn,tabl %O A225085 1,2 %A A225085 _Joerg Arndt_, Apr 27 2013