This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225099 #14 Apr 29 2013 16:43:26 %S A225099 0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,1,0,0,0,1,1,0,0,0,1,0,1,0,1, %T A225099 1,1,2,0,0,0,1,2,0,1,0,0,0,0,1,0,0,0,1,1,0,0,0,2,1,1,0,0,0,0,0,1,0,0, %U A225099 1,0,0,0,1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,0,0,2 %N A225099 Number of ways n can be represented as a sum of two distinct nontrivial prime powers (numbers of the form p^k where p is a prime number and k >= 2). %C A225099 Nontrivial prime powers are A025475 except the first term A025475(1) = 1. %C A225099 First occurrences of terms bigger than 2: see A225100. %C A225099 Among first 2^32 terms 16346685 are positive (that is 0.38%). %C A225099 Among first 2^34 terms 55527808 are positive (0.32%). %e A225099 12 = 2^2 + 2^3, so a(12) = 1. %e A225099 36 = 32 + 4 = 27 + 9, so a(36) = 2. %t A225099 nn = 100; p = Sort[Flatten[Table[Prime[n]^i, {n, PrimePi[Sqrt[nn]]}, {i, 2, Log[Prime[n], nn]}]]]; t =Sort[Select[Flatten[Table[p[[i]] + p[[j]], {i, Length[p] - 1}, {j, i + 1, Length[p]}]], # <= nn &]]; Table[Count[t, n], {n, 0, nn}] (* _T. D. Noe_, Apr 29 2013 *) %o A225099 (C) %o A225099 #include <stdio.h> %o A225099 #include <stdlib.h> %o A225099 #define TOP (1ULL<<17) %o A225099 unsigned long long *powers, pwFlat[TOP], primes[TOP] = {2}; %o A225099 int main() { %o A225099 unsigned long long a, c, i, j, k, n, p, r, pp = 1, pfp = 0; %o A225099 powers = (unsigned long long*)malloc(TOP * TOP/8); %o A225099 memset(powers, 0, TOP * TOP/8); %o A225099 for (a = 3; a < TOP; a += 2) { %o A225099 for (p = 0; p < pp; ++p) if (a % primes[p] == 0) break; %o A225099 if (p == pp) primes[pp++] = a; %o A225099 } %o A225099 for (k = i = 0; i < pp; ++i) %o A225099 for (j = primes[i]*primes[i]; j < TOP*TOP; j *= primes[i]) %o A225099 powers[j/64] | = 1ULL << (j & 63), ++k; %o A225099 if (k > TOP) exit(1); %o A225099 for (n = 0; n < TOP * TOP; ++n) %o A225099 if (powers[n/64] & (1ULL << (n & 63))) pwFlat[pfp++] = n; %o A225099 for (n = 0; n < TOP * TOP; ++n) { %o A225099 for (c = i = 0; pwFlat[i] * 2 < n; ++i) %o A225099 r=n-pwFlat[i], c+= (powers[r/64] & (1ULL <<(r&63))) > 0; %o A225099 printf("%llu, ", c); %o A225099 } %o A225099 return 0; %o A225099 } %Y A225099 Cf. A025475, A225100. %K A225099 nonn %O A225099 0,37 %A A225099 _Alex Ratushnyak_, Apr 27 2013