This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225102 #11 Feb 21 2017 20:16:33 %S A225102 12,13,17,20,24,25,29,31,33,34,35,36,40,41,43,48,52,53,57,58,59,65,68, %T A225102 72,73,74,76,80,81,85,89,90,91,96,97,106,108,113,125,129,130,132,133, %U A225102 134,136,137,141,144,145,146,148,150,152,153,155,157,160,170,173,174,177 %N A225102 Numbers that can be represented as a sum of two distinct nontrivial prime powers (numbers of the form p^k where p is a prime number and k >= 2). %C A225102 Indices of positive terms in A225099. %C A225102 Nontrivial prime powers are A025475 except the first term A025475(1) = 1. %H A225102 Robert Israel, <a href="/A225102/b225102.txt">Table of n, a(n) for n = 1..10000</a> %p A225102 N:= 1000: # to get all terms <= N %p A225102 P:= select(isprime, [2,seq(i,i=3..floor(sqrt(N)),2)]): %p A225102 PP:= sort(map(p -> seq(p^t,t=2..floor(log[p](N))), P)): %p A225102 sort(convert(select(`<=`,{seq(seq(PP[i]+PP[j],j=1..i-1),i=1..nops(PP))},N),list)); # _Robert Israel_, Feb 21 2017 %t A225102 nn = 177; p = Sort[Flatten[Table[Prime[n]^i, {n, PrimePi[Sqrt[nn]]}, {i, 2, Log[Prime[n], nn]}]]]; Select[Union[Flatten[Table[p[[i]] + p[[j]], {i, Length[p] - 1}, {j, i + 1, Length[p]}]]], # <= nn &] (* _T. D. Noe_, Apr 29 2013 *) %o A225102 (C) %o A225102 #include <stdio.h> %o A225102 #include <stdlib.h> %o A225102 #define TOP (1ULL<<17) %o A225102 unsigned long long *powers, pwFlat[TOP], primes[TOP] = {2}; %o A225102 int main() { %o A225102 unsigned long long a, c, i, j, k, n, p, r, pp = 1, pfp = 0; %o A225102 powers = (unsigned long long*)malloc(TOP * TOP/8); %o A225102 memset(powers, 0, TOP * TOP/8); %o A225102 for (a = 3; a < TOP; a += 2) { %o A225102 for (p = 0; p < pp; ++p) if (a % primes[p] == 0) break; %o A225102 if (p == pp) primes[pp++] = a; %o A225102 } %o A225102 for (k = i = 0; i < pp; ++i) %o A225102 for (j = primes[i]*primes[i]; j < TOP*TOP; j *= primes[i]) %o A225102 powers[j/64] |= 1ULL << (j & 63), ++k; %o A225102 if (k > TOP) exit(1); %o A225102 for (n = 0; n < TOP * TOP; ++n) %o A225102 if (powers[n/64] & (1ULL << (n & 63))) pwFlat[pfp++] = n; %o A225102 for (n = 0; n < TOP * TOP; ++n) { %o A225102 for (c = i = 0; pwFlat[i] * 2 < n; ++i) %o A225102 r=n-pwFlat[i], c+= (powers[r/64] & (1ULL <<(r&63))) > 0; %o A225102 if (c) printf("%llu, ", n); %o A225102 } %o A225102 return 0; %o A225102 } %Y A225102 Cf. A025475, A225099. %K A225102 nonn %O A225102 1,1 %A A225102 _Alex Ratushnyak_, Apr 28 2013