cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A225107 Number of (4n-3)-digit 4th powers in carryless arithmetic mod 10.

This page as a plain text file.
%I A225107 #16 Feb 13 2024 02:59:22
%S A225107 3,24,228,2256,22512,225024,2250048,22500096,225000192,2250000384,
%T A225107 22500000768,225000001536,2250000003072,22500000006144,
%U A225107 225000000012288,2250000000024576,22500000000049152,225000000000098304,2250000000000196608,22500000000000393216
%N A225107 Number of (4n-3)-digit 4th powers in carryless arithmetic mod 10.
%D A225107 J. Y. Lee and J.-L. Kim, Powers, Pythagorean triples, and Fermat's Last Theorem in carryless arithmetic mod 10, preprint, April, 18, 2013.
%H A225107 Jon-Lark Kim, <a href="http://maths.sogang.ac.kr/jlkim/preprints.html"> Preprints</a>
%H A225107 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (12,-20).
%F A225107 a(k) = (1/4)*{9* 10^(k-1) - 2^(k-1)} + 2^(k-1).
%F A225107 a(n) = 12*a(n-1)-20*a(n-2). G.f.: -3*x*(4*x-1) / ((2*x-1)*(10*x-1)). - _Colin Barker_, May 11 2013
%e A225107 For k=1, there are three one-digit 4th powers: 1^4=9^4=3^4=7^4=1, 2^4=8^4=4^4=6^4=6, 5^4=5.
%Y A225107 Cf. A169963
%K A225107 nonn,base,easy
%O A225107 1,1
%A A225107 _Jon-Lark Kim_, Apr 28 2013
%E A225107 More terms from _Colin Barker_, May 11 2013