This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A225110 #20 Jun 13 2025 07:41:22 %S A225110 1,6,18,28,42,54,66,78,102,114,120,126,138,162,174,180,186,196,198, %T A225110 222,234,246,258,282,294,306,318,342,354,366,378,402,414,426,438,462, %U A225110 474,486,496,498,522,534,546,558,582,594,606,618,642,654,666,672,678,702,714 %N A225110 Numbers m such that S = Sum_{i = 1..q} 1/d(i) is an integer where d(i) are the divisors of m in increasing order, and q the smallest integer 1 < q <= tau(m) for m > 1; and a(1) = 1. %C A225110 By convention, for n = 1, a(1) = 1 with q = 1. %C A225110 The corresponding q are 1, 4, 4, 6, 4, 4, 4, 4, 4, 4, 16, 4, 4, 4, 4, 15, 4, 6, 4,... %C A225110 Properties of this sequence: %C A225110 q = tau(n) if n = 1, 6, 28, 120, 496,... is a multiply-perfect numbers: n divides sigma(n) (see A007691). This numbers are in the sequence. %C A225110 S = 2 for a majority of n %C A225110 S = 3 for n = 120, 180, 672, 1890, 8460, 9540,... %C A225110 S = 4 for n = 30240, 32760, 90720,... %H A225110 Michael De Vlieger, <a href="/A225110/b225110.txt">Table of n, a(n) for n = 1..10000</a> %e A225110 18 is in the sequence because the divisors of 18 are 1, 2, 3, 6, 9 and 18 => 1 + 1/2 + 1/3 + 1/6 = 2. %e A225110 28 is in the sequence because 28 is a multiply-perfect numbers: the divisors are 1, 2, 4, 7, 14, 28 and 1 + 1/2 + 1/4 + 1/7 + 1/14 + 1/28 = 2. %e A225110 From _Michael De Vlieger_, Sep 15 2017: (Start) %e A225110 Records k and first positions n of records of q that pertain to a(n) for values less than or equal to 10^7: %e A225110 i k n a(n) %e A225110 ---------------------------- %e A225110 1 1 1 1 %e A225110 2 4 2 6 %e A225110 3 6 4 28 %e A225110 4 10 39 496 %e A225110 5 14 608 8128 %e A225110 6 15 16 180 %e A225110 7 16 11 120 %e A225110 8 17 1543 20482 %e A225110 9 18 2521 33345 %e A225110 10 20 629 8415 %e A225110 11 21 145 1890 %e A225110 12 22 30824 407715 %e A225110 13 24 52 672 %e A225110 14 26 2908 38430 %e A225110 15 28 3034 40128 %e A225110 16 30 1917 25410 %e A225110 17 34 96461 1274100 %e A225110 18 35 1544 20496 %e A225110 19 43 61026 806190 %e A225110 20 45 7839 103530 %e A225110 21 54 5512 72800 %e A225110 22 58 74184 979992 %e A225110 23 69 6871 90720 %e A225110 24 77 270202 3571050 %e A225110 25 80 39625 523776 %e A225110 26 96 2284 30240 %e A225110 27 216 164870 2178540 %e A225110 (End) %p A225110 with(numtheory): for n from 1 to 1000 do:x:=divisors(n):n1:=nops(x):s:=0:ii:=0:for q from 1 to n1 while(ii=0) do:s:=s+1/x[q]:if s=floor(s) and q>1 then ii:=1: printf(`%d, `,n):else fi:od:od: %t A225110 Select[Range@ 714, Function[n, AnyTrue[If[n > 1, Rest@ #, #] &@ FoldList[Plus, 1/Divisors@ n], IntegerQ]]] (* _Michael De Vlieger_, Sep 15 2017 *) %o A225110 (PARI) isok(k) = if (k==1, return(1)); my(d=divisors(k), s=1); for (i=2, #d, s += 1/d[i]; if (denominator(s)==1, return(1));); \\ _Michel Marcus_, Feb 22 2025 %Y A225110 Cf. A000005, A000203, A007691. %K A225110 nonn %O A225110 1,2 %A A225110 _Michel Lagneau_, Apr 28 2013 %E A225110 Name edited by _Michel Marcus_, Jun 13 2025